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1.	Introduction	
	

Improving	 human-computer	 interactions	 can	 help	 increase	 critical	 understanding	 of	 ecological	
sustainability	 [1]	 by,	 for	 example,	 helping	 to	 parameterize	 dynamical	 systems	models	 of	 the	 complex	
structure	 and	nonlinear	dynamics	of	 ecological	 systems.	 	 A	prominent	 family	of	 such	models	 includes	
allometric	trophic	network	(ATN)	models	[2,3],	which	use	metabolic	rates	estimated	from	body	size	and	
the	 networks	 of	 feeding	 relationships	 among	 species	 to	 describe	 the	 flow	 of	 energy	 and	 biomass	
through	food	webs.	An	ATN	model	calculates	species’	changes	in	biomass	as	gains	due	to	photosynthesis	
and	 feeding	minus	 losses	due	 to	metabolism	and	being	 consumed.	ATN	models	 consist	 of	 systems	of	
differential	equations	with	several	parameters	for	each	species	such	as	metabolic	rate	and	also	for	each	
link	 such	 as	 assimilation	 efficiency.	 Given	 the	 large	 parameter	 space	 of	 the	many	 variables	 and	 their	
interactions,	 parameterizing	 ATN	 models	 so	 that	 they	 (1)	 dynamically	 sustain	 many	 species	 and	 (2)	
accurately	 predict	 organismal	 abundance	 in	 nature	 presents	 significant	 challenges.	We	 address	 these	
challenges	by	gamifying	ATN	models	so	that	human	intuition	and	visual	reasoning	are	better	integrated	
with	machine	learning	and	computational	power	in	order	to	better	understand	ecological	sustainability.	
	

2.	Convergence	Game	
	

Our	Convergence	game	is	one	of	several	“World	of	Balance”	[4]	(WoB)	mini	games	where	players	act	as	
stewards	of	virtual	ecosystems	based	on	the	well-studied	Serengeti	food	web.	Our	original	Convergence	
game	challenges	players	to	closely	match	a	time	series	of	different	species’	biomass	in	a	simulated	food	
web	by	parameterizing	an	ATN	model.	 	Players	are	 shown	a	default	 graph	and	a	 target	graph	of	data	
produced	by	parameterizing	an	ATN	model	with	two	different	sets	of	values.	Players	manipulate	a	set	of	
sliders	 to	change	 the	default	parameter	values	 in	order	 to	make	 the	default	graph	 look	more	 like	 the	
target	graph	and	win	credits.	The	parameters	 that	can	be	manipulated	 in	 the	game	are	 the	metabolic	
rate	X	for	animal	species	and	carrying	capacity	K	for	plant	species.	
	

Our	current	Multiplayer	Convergence	
game	challenges	two	players	to	
compete	for	the	best	match	between	
the	default	and	target	graphs.	
Gameplay	takes	place	across	several	
rounds	in	which	players	bet	with	game	
credits	that	their	parameter	
manipulations	match	better	than	the	
other	player’s	manipulations.	The	
winner	of	each	round	receives	half	of	
the	pot.		The	other	half	is	accumulated	
until	the	end	of	the	game,	which	is	
won	by	the	winner	of	the	final	round.	

	 	
Figure	1:	Convergence	game	screen	



3.	Problem	definition	
	

Even	in	a	small	food	web	consisting	of	a	handful	of	species	the	parameter	space	defined	by	the	minimal	
set	of	parameters	 is	 fairly	 large.	Due	 to	 the	network	of	 interdependencies	within	a	 food	web,	a	 small	
change	made	to	one	species’	parameter	 impacts	 the	dynamics	of	all	 species,	and	thus	 the	ecosystem.	
This	makes	 it	non-trivial	 to	 find	the	parameter	values	 that	match	the	default	 to	 the	target	graph.	This	
difficulty	motivates	our	central	goal	of	developing	an	intuitive	understanding	of	ecological	dynamics	and	
sustainability	by	supporting	players	to	discover	parameter	values	that	replicate	the	target	ecosystem.		
	

4.	Methodology	
	

To	produce	the	target	graphs	for	Multiplayer	Convergence,	we	sought	to	improve	the	data	used	for	the	
original	 Convergence	 game	 and	 to	 determine	 ranges	 of	 parameter	 values	 likely	 to	 produce	 desired	
outcomes	and	be	displayed	to	players	as	hints.		We	achieved	this	using	a	4-step	process	for	each	target	
graph:	 (1)	 species	 selection,	 (2)	 parameter	 space	 exploration	 and	 simulation,	 (3)	 machine-learning	
classification	of	simulation	results,	and	(4)	evaluation	of	derived	parameter	ranges.	
	

4.1	Species	selection:	We	represent	food	webs	as	directed	graphs	in	which	nodes	represent	species	and	
an	 edge	 (u,	 v)	 indicates	 that	 species	 u	 is	 eaten	 by	 species	 v.	 We	 maintained	 manageable	 levels	 of	
complexity	by	constructing	smaller	food	webs	based	on	the	full	WoB	food	web	with	87	species	using	a	
sampling	 algorithm	 that	 produces	 subgraphs	 with	 the	 following	 properties:	 (1)	 having	 exactly	 one	
connected	component,	(2)	containing	all	possible	trophic	links	from	the	full	web	involving	the	species	in	
the	sub-web,	(3)	having	a	specified	number	of	plant	species	deemed	appropriate	for	the	sub-web	size,	
and	(4)	having	no	incomplete	food	chains	–	that	is,	having	no	non-plants	as	source	nodes.	Additionally,	
the	algorithm	minimizes	the	number	of	plant-eating	species	lacking	predators	in	the	sub-web.	
	

4.2	Parameter	space	exploration	and	simulation:	For	each	sub-web,	we	ran	1000	simulations	using	the	
ATN	Engine	with	randomized	parameters.	We	independently	drew	each	parameter	value	from	a	uniform	
distribution	between	50%	and	150%	of	its	default	value.	The	WoB	database	contains	default	parameter	
values	for	each	species	based	on	measurements	and	established	models	of	metabolic	rates.	
	

4.3	Machine-learning	 classification	of	 simulation	 results:	We	
used	the	simulation	data	to	train	a	machine	learning	algorithm	
to	predict	ecosystems	health	based	on	model	parameters.	For	
each	 simulation,	 we	 calculated	 the	 linear	 time	 trend	 of	 the	
“environment	 score.”	 Since	 predators	 at	 high	 trophic	 levels	
such	as	raptors	and	lions	indicate	ecosystem	health,	the	score	
is	 the	 total	 biomass	 of	 the	 ecosystem,	 biased	 such	 that	
biomass	 at	 high	 trophic	 levels	 counts	 more	 than	 biomass	 at	
low	 levels.	 	 Score	 trend	 values	 were	 assigned	 as	 “good”	 or	
“bad”	(or	no	label)	if	they	were	among	the	top	25%	or	bottom	
25%	(or	middle	50%)	of	simulations.	The	simulation’s	input	parameters	and	this	ecosystem	health	label	
comprised	 training	 data	 for	 decision	 tree	 classification	 using	 Weka’s	 implementation	 of	 the	 C4.5	
algorithm	[5,6].	While	 this	provided	decision	 trees	capable	of	predicting	ecosystem	health	with	a	high	
degree	 of	 accuracy,	 we	 were	 more	 interested	 in	 obtaining	 information	 about	 promising	 parameter	
ranges	making	predictions	for	specific	combinations	of	parameter	values.	
	

4.4	Evaluation	of	parameter	ranges:	We	used	the	structure	of	the	decision	trees	to	derive	and	evaluate	
parameter	 ranges.	 Each	 node	 in	 a	 binary	 decision	 tree	 represents	 a	 branching	 criterion	 on	 the	 input	
attributes	that	distinguishes	the	data	instances	in	the	left	subtree	from	those	in	the	right	subtree.	These	
criteria	are	chosen	by	 the	decision	 tree	 learning	algorithm	to	maximize	 the	predictive	accuracy	of	 the	

X31 <= 0.7 
|   X42 <= 0.637 
|   |   X70 <= 0.1395: bad (41.0) 
|   |   X70 > 0.1395: good (87.0) 
|   X42 > 0.637: bad (138.0) 
X31 > 0.7 
|   X70 <= 0.217: bad (3866.0/3.0) 
|   X70 > 0.217 
|   |   R5 <= 0.8: good (11.0) 
|   |   R5 > 0.8: bad (19.0) 
 

Figure	2.	A	decision	tree	



tree	on	 the	 training	data.	 For	 real-valued	 input	attributes	 such	as	 the	ATN	parameters,	each	 criterion	
consists	 of	 parameter	 name	 and	 a	 threshold	 value	 that	 separates	 the	 instances	 in	 the	 two	 subtrees.	
Thus,	for	each	each	parameter	there	is	a	(possibly	empty)	set	of	values,	given	by	the	decision	tree	nodes	
which	 have	 been	 chosen	 to	 effectively	 separate	 “good”	 from	 “bad”	 instances.	We	derived	 ranges	 for	
each	 parameter	 from	 each	 pair	 of	 successive	 threshold	 values	 listed	 in	 sorted	 order.	 Each	 range	was	
assigned	a	score	equal	to	the	probability	that	a	simulation	drawn	from	within	the	range	has	a	 label	of	
“good,”	minus	the	probability	that	it	has	a	“bad”	label.	Ranges	with	a	score	above	a	certain	threshold	are	
shown	to	the	players	as	hints.	
	

5.	Experimental	Design	
	

In	 our	 user	 study,	 planned	 for	 the	 fall	 of	 2016,	we	will	 compare	 two	 separate	 groups	 of	Multiplayer	
Convergence	players.	One	group	plays	with	hints	(parameter	ranges	likely	to	lead	to	healthy	ecosystems)	
and	the	other	group	plays	without	such	hints.	This	design	will	enable	us	to	experimentally	study	human-
computer	interactions	with	a	focus	on	the	effect	of	hints	derived	from	the	environment	scores	on	how	
quickly	 and	 accurately	 players	 discover	 parameter	 sets	 that	 generate	 biomass	 dynamics	 match	 the	
dynamics	described	in	the	target	graph.	
	

6.	Conclusion	
	

We	have	established	a	foundation	upon	which	we	can	test	various	hypotheses	about	guiding	
Convergence	players	using	information	about	the	parameter	search	space	derived	from	machine	
learning.		As	we	continue	to	develop	the	tools,	methodology,	and	experimental	design,	we	will	explore	
further	possibilities	of	integrating	machine	learning	and	gamification	in	order	to	parameterize	dynamic	
models	of	complex	ecological	networks	and	better	understand	the	sustainability	of	the	ecosystems	the	
models	represent.	
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