Optimizing Bioenergetic Food Web Models of Ecosystems Using Gamification and Machine Learning

> Ben Saylor Master's Thesis Defense San Francisco State University May 15, 2017

Introduction

- Ecosystems are complex systems; ecological modeling is complex
- Allometric trophic network (ATN) models
 - Model population dynamics in terms of energy flow through *food* webs
 - Difficult to parameterize due to highly complex and nonlinear behavior
- Our objective: find ways of parameterizing ATN models to replicate sustaining ecosystems
- Our approaches: based on machine learning and gamification

Contributions

- Graph sampling algorithm for food webs
- New ATN simulator implementation
 - Improves correctness and performance over previous implementation
 - Adds steady state detection
- New environment score formula
- Showed that ML can predict ecosystem health
- Method of generating persistent simulated ecosystems
 - New ecosystems for Convergence game
- ML-based method for generating parameter hints
- ML-based method of searching ATN model parameter space

ATN models

• System of ordinary differential equations

$B'_i = f(\mathbf{B})$

ATN model equations

Producers:

$$B'_{i} = r_{i}B_{i}G_{i}(\mathbf{B}) - \sum_{j \in predators} (x_{j}y_{ji}\alpha_{ji}F_{ji}B_{j}/e_{ji})$$

Consumers:

$$B'_{i} = \sum_{j \in prey} (x_{i}y_{ij}\alpha_{ij}F_{ij}B_{i}) - \sum_{j \in predators} (x_{j}y_{ji}\alpha_{ji}F_{ji}B_{j}/e_{ji}) - x_{i}B_{i}$$

Growth function:

$$G_i(B) = 1 - \frac{B_i}{K_i}$$

Functional response:

$$F_{ij} = \frac{B_j^{1+q_{ij}}}{\sum_{m \in prey} \alpha_{im} B_m^{1+q_{im}} + B_{0ij}^{1+q_{ij}}}$$

ATN model parameters

Parameter	Description
α_{ij}	Relative half-saturation density of predator i when consuming prey j
B_{0ij}	Half-saturation density of predator <i>i</i> when consuming prey <i>j</i>
C _{ij}	Competition between producers <i>i</i> and <i>j</i> for shared carrying capacity
e _{ij}	Assimilation efficiency of prey <i>j</i> by predator <i>i</i>
K_i	Carrying capacity of producer <i>i</i>
K_s	System-wide carrying capacity
q_{ij}	Functional response control parameter
r _i	Growth rate of producer <i>i</i>
x_i	Metabolic rate of consumer <i>i</i>
y_{ij}	Maximum ingestion rate of predator <i>i</i> when consuming prey <i>j</i>

ATN model simulation

• Integrate the equations, solving the *initial value problem*

Gamification

- Crowdsourcing human problem-solving abilities to help solve problems that are hard using computation alone
- Successful example: FoldIt
- World of Balance by Dr. Yoon et al.: ecosystem nurturing game backed by ATN simulations
- Mini-games within WoB include Convergence

Convergence game

Food webs as graphs

Graph sampling and "subwebs"

87 Serengeti species

8 Serengeti species

Motivations: analysis, gameplay

Subweb criteria

- 1. Single connected component
- 2. No incomplete food chains
- 3. Contains all edges between selected nodes

Random subweb algorithm

- Start with given number of producer nodes
- Each iteration, grow outward:
 - Try adding a predator of a "lonely plant eater"
 - If none, add any neighboring consumer
- Add all edges between selected nodes

Random subweb algorithm

33)

- 2 Plant Juices
- 3 Fruits and Nectar
- 4 Grains and Seeds
- 5 Grass and Herbs
- 7 Trees and Shrubs
- 15 Herbivorous True Bugs
- 16 Katydids
- 26 Yellow-Breasted Apalis
- 27 Yellow-Bellied Eremomela
- 31 Tree Mouse
- 33 Cape Teal
- 41 Striped Weasel
- 43 Coqui Francolin
- 49 African Marsh Owl
- 50 Dwarf Mongoose
- 51 Hooded Vulture
- 53 African Fish Eagle

- 55 Greater Bushbaby
- 61 Leopard Tortoise
- 64 Nile Monitor Lizard
- 65 Kori Buskard
- 67 Black Backed Jackal
- 69 Serval Cat
- 71 Kirk's Dik-dik
- 72 Crested Porcupine
- 73 Oribi
- 75 Black Mamba
- 80 Leopard
- 85 Ostrich
- 86 Lion
- 89 Southern Eland
- 91 Nile Crocodile
- 94 Hippopotamus
- 95 African Elephant

Measuring ecosystem health

- Goals:
 - Provide WoB players with feedback via score
 - Provide target variables for machine learning
- WoB Environment Score
 - Rewards high biomass levels
 - Rewards presence of high trophic level species
 - Rewards species diversity

Original Environment Score $\left[\left[5 \log_2 \left(\sum_{i=1}^N b_i \left(\frac{B_i}{b_i} \right)^{T_i} \right) \right]^2 + N^2 \right]$

- Potential disadvantages:
 - Top predators and small animals can contribute orders of magnitude more weight
 - WoB body size data is estimated
 - N² does not scale with biomass species diversity makes a very small contribution

Revised Environment Score $BiomassScore = \sum_{i=1}^{N} T_i B_i$ $Shannon = -\sum_{i=1}^{N} p_i \log_2 p_i \quad \text{where } p_i = \frac{B_i}{\sum_{j=1}^{N} B_j}$

 $RevisedEnvironmentScore = BiomassScore \times (1 + Shannon)$

- Advantages:
 - Species contributions are more balanced
 - Species diversity makes a larger contribution

Parameter range hints for Convergence

- Goal: guide Convergence players by showing promising parameter ranges
- 4-step approach:
 - **1. Species selection**: use our graph sampling algorithm to generate food webs
 - 2. Parameter space exploration and simulation: Generate 1,000s of simulations with randomized parameters, evaluate ecosystem health using linear time trend of environment score
 - **3. Machine-learning classification of simulation results**: Classify simulations as "good" or "bad" based on score trend values, train decision trees to predict label based on model parameters
 - **4. Derivation of parameter ranges to display as game hints**: Use the decision tree structure to derive promising parameter ranges

Example of decision tree

```
X28 <= 0.601404
   X51 <= 0.14091
       X28 <= 0.455708: good (11.0)
       X28 > 0.455708: bad (10.0/1.0)
   X51 > 0.14091
       X73 <= 0.079958
           X86 <= 0.069814: good (22.0)
           X86 > 0.069814: bad (5.0/1.0)
       X73 > 0.079958: good (157.0)
X28 > 0.601404
   X51 <= 0.18639: bad (194.0)
   X51 > 0.18639
       K3 <= 6003.88: good (56.0/1.0)
       K3 > 6003.88
  X73 <= 0.145747: bad (41.0)
        X73 > 0.145747: good (4.0/1.0)
```


Example of derived ranges

Evaluation: classifier performance

Evaluated approach on 3 food webs

Food web	Class	Precision	Recall	F1 score
5 species	good	0.951	0.951	0.951
	bad	0.959	0.959	0.959
10 species	good	1.000	0.996	0.998
	bad	0.996	1.000	0.998
15 species	good	0.996	1.000	0.998
	bad	1.000	0.996	0.998

Evaluation: parameter ranges

 Conducted "simulated user study" with a test group given hints, a control group not given hints

Food web	Statistic	e Contr	ol group	Test group
5 species	mean	-3.()54789	5.358788
	std	9.4	10075	2.236706
10 species	mean	-5.2	187572	-6.016333
	std	8.2	26043	2.130220
15 species	mean	-2.250668		-0.975169
	std	5.1	01375	4.270391
Foo	d web t	-statistic	p-valı	ıe
5 sp	ecies	27.508	1.772×1	0^{-127}
10 species		-3.0842	0.0020)9
15 s	pecies	6.0628	$1.6038 \times$	10^{-9}

Steady states

Steady states: Implementation

- Basis: ATN model is memoryless: $\mathbf{B}_{t}' = f(\mathbf{B}_{t})$
 - Watch for zero derivatives:

$$\left|\frac{B_i'}{B_i}\right| \le 10^{-10}$$

- Watch for return to previous state: $\left|\frac{B_i B_{si}}{B_{si}}\right| \le 0.01$
 - Wait for this to occur 3 times for confirmation

Steady states: Evaluation

		TP	FP	Precision
Food web	q			
2-8-9-26-41	0.0	319	0	1.000
	0.2	954	0	1.000
3-21-55-80-85	0.0	29	1	0.967
	0.2	432	86	0.834
3-30-50-69-71	0.0	17	0	1.000
	0.2	929	50	0.949
2-3-5-8-9-21-22-69-71-94	0.0	718	1	0.999
	0.2	725	0	1.000
4-7-14-43-47-61-69-74-80-89	0.0	836	0	1.000
	0.2	850	0	1.000

Generating sustaining ecosystems for Convergence

- Objective: generate simulated ecosystems in which
 - all species survive, and
 - biomass graph is visually interpretable.
- Approach:
 - 1. Run many simulations to steady state including animals
 - 2. Drop species that went extinct, assemble food web from remaining species
 - 3. Generate new simulations *starting* with final biomass from previous simulations, pruned food webs, same parameters
 - 4. Automatically filter results for visual clarity

Results

• Preliminary experiment filtered 4,000 simulations down to 384 such as the one below

Using decision trees to narrow the parameter search space

- Objective: For a given food web, identify regions of the parameter space leading to sustaining ecosystems
- Definition of "sustaining": all species survive to steady state
- Approach: iteratively refine search space based on promising regions identified using decision trees

Decision tree search process

- Each iteration:
 - Generate 1,000 simulations with parameter values randomly drawn from the promising regions identified in the previous iteration
 - Train and test a decision tree to classify "good" vs.
 "bad" simulations based on median extinction count
 - Identify "promising" decision tree leaves that predict "good" simulations
 - Follow the path to each leaf to obtain promising region bounds

Decision tree search results

Progress in reducing extinctions

Classifier prediction performance

Future work

- Convergence hints: user study, dynamic version
- Steady state detection improvement
- Decision tree search improvements: class balance, classification accuracy, computational performance
- Study persistent chaotic dynamics
- Consider system-wide K for WoB and Convergence
- Machine learning approaches that generalize across different food webs

Immediate future work

- Evaluation of effects of an alternative producer growth function on steady state detection
- Evaluation of using promising regions from decision tree search to generate Convergence ecosystems