
OPTIMIZING BIOENERGETIC FOOD WEB MODELS OF ECOSYSTEMS USING

GAMIFICATION AND MACHINE LEARNING

A thesis presented to the faculty of

San Francisco State University

In partial ful�lment of

�e Requirements for

�e Degree

Master of Science

In

Computer Science

by

Benjamin Robert Saylor

San Francisco, California

May 2017

Copyright by

Benjamin Robert Saylor

2017

CERTIFICATION OF APPROVAL

I certify that I have read OPTIMIZING BIOENERGETIC FOODWEB MODELS

OF ECOSYSTEMS USING GAMIFICATION AND MACHINE LEARNING by

Benjamin Robert Saylor and that in my opinion this work meets the criteria

for approving a thesis submi�ed in partial ful�llment of the requirements

for the degree: Master of Science in Computer Science at San Francisco State

University.

Anagha Kulkarni

Assistant Professor of Computer Science

Ilmi Yoon

Professor of Computer Science

Pleuni Pennings

Assistant Professor of Biology

OPTIMIZING BIOENERGETIC FOOD WEB MODELS OF ECOSYSTEMS USING

GAMIFICATION AND MACHINE LEARNING

Benjamin Robert Saylor

San Francisco State University

2017

Ecosystems are complex systems with many interdependent participants. Bioener-

getic models of population dynamics help provide insight into speci�c aspects of ecosys-

tem behavior. Due to the complex, nonlinear behavior of these models, and the large

number of input parameters, it is di�cult to parameterize them to correctly re�ect real-

world phenomena. We address this problem in the context of allometric trophic network

models, a category of bioenergetic models based on food webs. Using custom simulation

so�ware to generate large numbers of simulated ecosystems, we apply machine learning

to help navigate the large parameter space, revealing combinations of model parameters

that result in sustaining ecosystems. Furthermore, we apply gami�cation to take advan-

tage of human intuition, using the insights gained from the machine learning process to

provide automatic guidance to players.

I certify that the Abstract is a correct representation of the content of this thesis.

Chair, �esis Commi�ee Date

ACKNOWLEDGMENTS

I would like to thank Dr. Anagha Kulkarni, my commi�ee chair, for giving

me the opportunity to embark on this journey, for her critical observations,

and for her gentle pragmatism; Dr. Ilmi Yoon for introducing me to gami-

�cation and computational ecology, and for recognizing my potential; and

Dr. Pleuni Pennings for stepping up at the last moment to serve a necessary

and appreciated role.

A special thanks to the late Dr. S. Jonathan Stern for introducing me to

the foundations of ecology and for lending an ecologist’s perspective to my

work. A pioneering expert on the ecology of minke whales and a kind hu-

man being, Dr. Stern will be missed by many.

I would also like to thank Dr. Neo Martinez and Dr. Rich Williams for shar-

ing their time and expertise on allometric trophic network models, and the

numerous faculty, sta�, and students at SFSU who made this work a possi-

bility.

Finally, I would like to thank my family and Zia Rauwolf for their uncondi-

tional love and support that kept me a�oat during this challenging under-

taking.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Contributions . 4

2 Background . 6

2.1 Allometric trophic network models . 6

2.2 Gami�cation and World of Balance . 10

3 Literature Review . 13

4 Experimental Methods, Implementation, and Analysis 22

4.1 Graph sampling for food webs . 24

4.1.1 Food webs as graphs . 24

4.1.2 Graph sampling and “subwebs” 26

4.1.3 Random connected induced subgraphs 27

4.1.4 Random successor subgraphs . 28

4.1.5 Depth-controlled random subgraphs 30

4.1.6 Results . 33

4.2 Measuring the health of simulated ecosystems 36

4.2.1 Oscillating pa�erns in biomass 36

4.2.2 �e original World of Balance Environment Score 38

4.2.3 Revised Environment Score . 39

4.2.4 Comparison of environment score formulas 43

vi

4.3 Identifying parameter range hints for the Convergence game 46

4.3.1 Species selection . 46

4.3.2 Parameter space exploration and simulation 46

4.3.3 Machine-learning classi�cation of simulation results 49

4.3.4 Derivation of parameter ranges to display as game hints 50

4.3.5 Evaluation . 55

4.4 Steady states . 59

4.4.1 Hypothesis . 60

4.4.2 Testing for steady states . 61

4.5 Implementation of steady state detection 63

4.5.1 Terminology . 63

4.5.2 Constant-biomass steady states 63

4.5.3 Oscillating steady states . 64

4.5.4 Implementation . 65

4.5.5 �alitative evaluation . 66

4.5.6 �antitative evaluation . 66

4.6 System-wide carrying capacity . 70

4.6.1 Comparison of the two growth functions 72

4.6.2 System-wide carrying capacity and steady state detection 72

4.7 Functional response control parameter q 75

4.8 E�ect of q > 0 on steady states . 78

vii

4.8.1 Steady state detection performance with q > 0 80

4.9 Generating sustaining simulations from steady states 83

4.9.1 Generating sustaining simulations for the Convergence game . . 86

4.9.2 Results . 87

4.10 Using decision trees to narrow the parameter search space 88

4.10.1 De�ning “sustaining” simulated ecosystems 89

4.10.2 Simulations whose sustainability cannot be measured 90

4.10.3 Problem de�nition . 91

4.10.4 Proposed solution . 91

4.10.5 Experiment . 95

4.10.6 Results . 97

4.10.7 Conclusions . 102

4.11 Using the decision tree search to generate Convergence simulations . . . 104

4.11.1 Results . 105

4.11.2 Conclusions . 107

5 Conclusions and Future Work . 109

5.1 Future work . 110

Bibliography . 113

viii

Table Page

LIST OF TABLES

2.1 ATN model parameters . 9

4.1 Performance of DepthControlledRandomSuccessorSubgraph imple-

mentation . 34

4.2 Evaluation of ecosystem health classi�cation model 55

4.3 Comparison of performance of two simulated groups of Convergence

players . 58

4.4 Welch’s t-test results for the data in Table 4.3 58

4.5 Steady state detection evaluation results 68

4.6 Steady state detection evaluation results with system-wide carrying ca-

pacity . 73

4.7 Steady state detection evaluation results with di�erent q values 80

4.8 Results of applying decision tree search regions to Convergence simula-

tion �lter . 106

ix

Figure Page

LIST OF FIGURES

4.1 Food web consisting of a producer and four consumer species inhabiting

the Serengeti ecosystem . 25

4.2 DepthControlledRandomSuccessorSubgraph examples 35

4.3 Example of simulation with oscillating biomass 37

4.4 Comparison of environment score smoothing methods 43

4.5 First comparison of environment score formulas 45

4.6 Second comparison of environment score formulas 45

4.7 Weka J48 decision tree representation . 53

4.8 Parameter range evaluation based on a decision tree 54

4.9 Observed steady states for a 4-species food web 62

4.10 A 10-species food web used in steady state detection evaluation 69

4.11 A detected constant steady state . 69

4.12 A detected oscillating steady state . 69

4.13 Comparison of individual K and system-wide K 74

4.14 E�ects of varying the q parameter . 77

4.15 Chaotic dynamics resolving to a steady state with q = 0.2 78

4.16 Persistent chaotic dynamics with q = 0.2. Inset shows zoomed-in view. . 81

4.17 Mean and variance of biomass over 10,000-timestep segments for a per-

sistent chaotic simulation . 82

4.18 Food web from which the simulations in �gure 4.19 were generated . . . 84

x

4.19 Examples of sustaining simulations generated from existing steady-state

simulations . 85

4.20 A simulated ecosystem selected by the Convergence steady-state �lter . 88

4.21 �ree food webs used in the decision tree search experiment 96

4.22 Distributions of extinction counts by iteration of the decision tree search

experiment . 98

4.23 Mean extinction count by iteration of the decision tree search experiment 99

4.24 Average F1 score by iteration of the decision tree search experiment . . . 100

4.25 Average tree size by iteration of the decision tree search experiment . . . 101

4.26 Example decision tree from decision tree search experiment 103

xi

1

Chapter 1

Introduction

Ecosystems are extremely complex systems involving many entities (such as plants, ani-

mals, and nutrients) and the relationships between these entities. �ese entities and their

relationships are characterized by numerous measurable a�ributes. Ecologists study

ecosystems by empirical observation and analysis, and o�en by using sophisticated

mathematical or computational models informed by empirical observation. Ecological

models apply various approaches to managing the complexity of real-world ecosystems,

depending on which aspects of the ecosystems are of particular interest in a given con-

text, and at what level of detail.

Population dynamics – how the sizes of populations change over time – is one im-

portant aspect of an ecosystem. Ecological population dynamics models are concerned

with how populations of species in ecosystems change over time depending on various

factors in their environment and relationships to each other – for example, the relation-

ship between predator and prey.

2

Allometric trophic network (ATN) models are the focus of this work. ATN models

describe population dynamics in ecosystems in terms of energy �ow through food webs.

�is family of models was developed by researchers in ecology including Yodzis & Innes

(1992) [1], Williams & Martinez (2004) [2], and Williams et al. (2007) [3], and continues

to form the basis of a growing body of ecological research. �e word “allometric” refers

to a key characteristic of these models, which is that the metabolic rates of di�erent

species are estimated based on their body size. “Trophic” refers to feeding relationships.

“Network” refers to food webs.

ATN models use food webs as the fundamental structures by which relationships be-

tween species are de�ned. A food web simply describes the set of species in an ecosystem

along with their feeding relationships – that is, it describes who eats whom in an ecosys-

tem [4]. As bioenergetic population dynamics models, ATN models describe the �ow of

energy or biomass over time from species to species, through a food web, and the result-

ing changes in populations, or total species biomass, over time. Biomass is introduced

into the system by plants – the primary producers. It �ows along branching routes from

species to species in the food web as predator consumes prey, and exits the system due

to transfer losses, metabolism, and mortality. �e abundance, or total biomass, of each

species depends on the food web structure, the availability of its prey (for animals) and

the populations of its predators. Additionally, it depends on numerous parameters de-

scribing such important factors as metabolic rate, body size, the environment’s carrying

capacity, food assimilation e�ciency, and functional response, or how the preference of

3

predators for various prey species changes based on prey abundance [3]. �e values of

these parameters are speci�c to individual species or pairwise relationships.

While this multitude of parameters enables ATN models to use food webs as a basis

for rich descriptions of ecosystems, it also poses signi�cant problems for constructing

and parameterizing models. If a food web is to be accurately modeled, not only must its

structure be correctly speci�ed, but the parameters of the model must be correctly set.

However, parameter values are o�en unknown and di�cult or impractical to measure

with the required degree of accuracy. Moreover, because the models are highly complex

and nonlinear, the e�ect of changing a parameter also depends on many other param-

eters. A “brute force” approach to model ��ing or optimization requires searching an

extremely large parameter space – a combinatorial optimization problem. Only a frac-

tion of this parameter space has been explored by researchers thus far. While the ATN

model has strong theoretical support and has been successfully parameterized to model

ecosystems with useful accuracy, the problem of determining parameter values that lead

to self-sustaining simulated ecosystems remains a major challenge for researchers [5].

So�ware implementations of the ATN model are capable of producing vast quanti-

ties of simulation data, presenting an opportunity to use machine learning techniques

capable of discerning pa�erns in large datasets. Our approach is to use machine learning

techniques to reveal promising ranges of parameter values that may lead to an optimal

solution.

�e other angle taken in this work is the use of gami�cation to leverage human

4

intuition to explore the ATN model parameter space within the framework of the online

multiplayer ecology game World of Balance. Using the insights gained from the machine

learning process, we augment the game-within-a-game called Convergence, developed

by SFSU students, with hints to guide players in the search for parameter values that

accurately replicate a target ecosystem as closely as possible, as well as by adding many

more simulated ecosystems to the Convergence ecosystem library.

1.1 Contributions

�e goal of this research is to develop methods for constructing and parameterizing

simulated food webs that are self-sustaining. We approach this goal from the two per-

spectives of machine learning and gami�cation.

In this work, we have made a number of contributions toward this goal.

We developed a graph sampling algorithm for deriving smaller food webs from larger

ones (Section 4.1). Smaller food webs are more manageable for gameplay and analysis.

�e algorithm is di�erent from general-purpose graph sampling algorithms in that it

preserves a viable food web structure.

We developed new ATN simulation code for World of Balance that corrects errors in

the previous version and provides a 90% speedup. �is allowed us to run hundreds of

thousands of simulations for long durations, enabling analysis of slow-developing pat-

terns. �is code is now packaged as an open-source Java library called ATN Simulator.
1

1
h�ps://github.com/brsaylor/atn-simulator

5

An important new feature of the simulation code is steady state detection (Sec-

tion 4.4). �is is based on our observation of both constant and oscillating steady states

of the model a�er which the subsequent dynamics of the simulation can be inferred. �is

has applications in eliminating unnecessary computation and identifying self-sustaining

ecosystems.

We developed a new formula for the World of Balance environment score (Sec-

tion 4.2.3). �is formula has several advantages over the old version, and rewards players

for maintaining ecologically important characteristics in their in-game ecosystems.

We showed that standard machine learning models can predict simulation outcomes

with good accuracy given the ATN model parameters as input (Section 4.3.5).

We made two contributions toward enhancing the Convergence game. We devel-

oped a method of generating sustaining and visually interpretable simulations, using it

to produce a preliminary library of about 200 simulations for 14 di�erent food webs (Sec-

tion 4.9). We also developed a machine-learning-based method of generating parameter

range hints for players (Section 4.3).

Finally, we developed a method of using machine learning to iteratively narrow the

large parameter search space by identifying promising regions (Section 4.10).

6

Chapter 2

Background

2.1 Allometric trophic network models

An ATN model consists of a system of ordinary di�erential equations. �ese equations

were �rst described by Yodzis & Innes (1992) [1], were extended to multi-species ecosys-

tems by Williams & Martinez (2004) [2] and Williams et al. (2007) [3], and further ex-

tended by Boit et al. 2012. [6] �e system of equations de�nes the change in biomass of

each species as a function of the current biomass of each species in the food web.

At a very high level, the system can be expressed as

B′i = f (B) (2.1)

where B′i is the derivative of the biomass of species i and B is the vector of the

biomasses of all species in the ecosystem.

�e details of the equations and their parameters depend on the speci�c variation

7

of ATN model in question. �e equations described here are for the ATN model imple-

mented in ATN Simulator and World of Balance, described in Section 2.2.

For producers (plants), B′i includes terms representing growth from photosynthesis

and loss from being consumed by other species. It is de�ned as follows:

B′i = riBiGi (B) −
∑

j∈predators

(xjyjiαjiFjiBj/eji) (2.2)

�e �rst term represents the growth of producer i , and is expressed in terms of a base

growth rate ri , the producer’s current biomass Bi , and its population density-dependent

growth rate Gi (B), described below. �e second term, the summation, represents loss

due to predation. �e loss to each predator j depends on j’s metabolic rate xj , j’s max-

imum ingestion rate yji when consuming i , j’s functional response Fji with respect to i

(described below), j’s current biomass Bj , and how e�ciently j can assimilate i , eji .

For consumers, B′i represents growth from feeding, metabolic loss, and loss from

being consumed by predators. It is de�ned as follows:

B′i =
∑
j∈prey

(xiyijαijFijBi) −
∑

j∈predators

(xjyjiαjiFjiBj/eji) − xiBi (2.3)

�e �rst summation represents population growth from feeding. �e second sum-

mation represents loss due to being consumed. �e last term represents metabolic loss,

or the consumption of energy to stay alive.

�e growth functionGi (B) represents how a producer’s growth depends on its popu-

8

lation density and the carrying capacity of the environment, or availability of resources,

such as nutrients, required for survival. Various versions of this growth function have

been proposed. �e simplest, used in this work, is a logistic growth function that causes

the growth rate to decrease to 0 as the producer approaches carrying capacity Ki . �is

function is de�ned as follows:

Gi (B) = 1 −
Bi
Ki

(2.4)

Boit et al. (2012) [6] use a di�erent logistic growth function that models producer

competition for a shared system-wide carrying capacity Ks :

Gi (B) = 1 −

∑
j∈producers cijBj

Ks
(2.5)

In this equation, cij are competition coe�cients, allowing some producers an advan-

tage over others in occupying the available carrying capacity. We implemented equa-

tion 2.5 in World of Balance and ATN Simulator, but used the simpler equation 2.4 for

most of the work.

�e functional response Fij is one of the most complex aspects of the model. In

ecology, functional response describes how the feeding rates of predators depend on the

population densities of its prey [3]. Functional response encompasses factors such as

preference of predators for their various potential prey, depending on prey abundance,

hunting and prey handling time, and a saturation point at which the predator cannot

9

consume the prey any faster. Of the many proposed models for functional response in

the literature, we use the following:

Fij =
B

1+qi j
j∑

m∈prey αimB
1+qim
m + B

1+qi j
0ij

(2.6)

�e �rst new parameter here is qij , the functional response control parameter, which

allows adjusting the shape of the response curve from a Holling Type II functional re-

sponse (q = 0) to a Holling Type III functional response (q = 1). Other new parameters

are αij and B0ij , which represent the relative half saturation density, and half saturation

density, respectively, controlling the saturation points of consumption rates.

Table 2.1 summarizes the model parameters used in these equations.

Parameter Description

αij Relative half-saturation density of predator i when consuming prey j
B0ij Half-saturation density of predator i when consuming prey j
cij Competition between producers i and j for shared carrying capacity

eij Assimilation e�ciency of prey j by predator i
Ki Carrying capacity of producer i
Ks System-wide carrying capacity

qij Functional response control parameter

ri Growth rate of producer i
xi Metabolic rate of consumer i
yij Maximum ingestion rate of predator i when consuming prey j

Table 2.1: ATN model parameters

An ATN model, like all scienti�c models, is a simpli�cation of reality that allows

10

researchers to study particular aspects of a real-world system. As such, ATN models

focus on population dynamics as driven by trophic relationships. �ey do not directly

account for factors such as climate, migration, terrain, or seasonality. �ey do not ex-

plicitly model spatial relationships.

Factors such as these can be incorporated by combining multiple ATN models with

di�erent parameters, by strategically manipulating model parameters, or by modifying

biomass directly over the course of a simulation. For example, Kuparinen et al. (2006) [7]

model populations of �sh moving through di�erent life stages by representing each life

stage as a separate guild (treated as a species in the model). �ey modify the biomass

of each guild over time to model the aging process. �ey also modify model parameters

over time to model the seasonal e�ects of �shing.

In this work, we study the behavior of individual ATN models whose parameters are

�xed over the course of a simulation, with no external modi�cation of species biomasses.

2.2 Gami�cation and World of Balance

Gami�cation is a way of crowdsourcing human “computational power” to solve impor-

tant problems that are di�cult to solve by computational methods alone. Gami�cation

takes advantage of human intuition by presenting problems in an engaging, enjoyable

game format. Players’ approaches and solutions to these problems are then analyzed to

guide further research.

A prominent gami�cation success story is Foldit [8], a 3D puzzle game in which

11

players a�empt to solve the problem of folding protein molecules. Players of Foldit

have solved important protein-folding problems that were previously unsolved by com-

putational methods. Foldit’s successes include an important breakthrough in AIDS re-

search [9].

World of Balance is an online, multiplayer computer game in which players act as

stewards of virtual ecosystems based on a recently compiled food web of species inhab-

iting the Serengeti ecosystem. �e virtual ecosystems in World of Balance are simulated

using an ATN model.

Yoon et al. (2013) [5] developed World of Balance in part to take a gami�cation ap-

proach to increasing the explored parameter space of ATN models, as well as to educate

students about ecology and the Serengeti ecosystem. Yoon et al. demonstrated remark-

able success in the educational goal, showing that a group of students who played the

game gained signi�cantly more knowledge than a control group who were assigned rel-

evant reading materials. �e data from the game were provided to scientists, who were

then able to examine the players’ intuitively guided search of the parameter space.

World of Balance consists of a lobby – a central hub where players maintain their

ecosystems – and a number of di�erent “mini-games”. Players can play mini-games to

earn credits with which they can purchase additional species for their lobby ecosystems.

Convergence and Multiplayer Convergence are two such mini-games. Convergence

presents players with two graphs of simulated ecosystem biomass, one of which they

can control by manipulating ATN model parameters using sliders, and a second which

12

has �xed parameter values unknown to the player. �e goal of the game is to �nd the

parameter values that cause the player’s graph to match the target graph. Multiplayer

Convergence has the same overall structure and objective, but instead of being a soli-

taire game, players compete with each other for the best match. Players place bets in

poker-style rounds. In Sections 4.3 and 4.9.1, we present proposed enhancements to the

Convergence games.

13

Chapter 3

Literature Review

Williams et al. (2007) [3] describe the approach taken to develop the Allometric Trophic

Model as an extension of prior work in population dynamics modeling by Yodzis and

Innes (1992) [1]. Yodzis and Innes identi�ed two fundamental aspects of organisms use-

ful in modeling population dynamics: body size and metabolic type. Body size, closely

correlated with surface-to-volume ratio, is an important factor in metabolism. It is

also, conveniently, easy to measure. �e metabolic types de�ned by Yodzis and Innes

are plants, invertebrates, endotherm (warm-blooded) vertebrates, and ectotherm (cold-

blooded) vertebrates. Once body size and metabolic type is determined for an organism,

it can be modeled as undi�erentiated biomass. �e total biomass of a species depends

on gains from net primary production (for plants), feeding (for animals), and losses from

metabolism, predation, and mortality.

An important concept in population dynamics models is functional response, which

de�nes the rate of consumption of a particular prey by a particular predator, depending

14

on the prey density. Various formulations of functional response have been de�ned, and

the exact formulation chosen for a model has a signi�cant e�ect on model output.

�e bioenergetic model of Yodzis and Innes (1992) [1] describes a relationship be-

tween two species, but it can be generalized to any number of species. �is generaliza-

tion is the contribution of Williams et al. (2007) [3], which extends the model to many

species and functional responses.

Machine learning techniques have been widely applied in ecology and this intersec-

tion is well-represented in the ecological literature. Baskerville et al. (2011) [10] describe

an application of Bayesian modeling to �nd group structure in a Serengeti food web.

�ey cite prior work that tried to describe food web structure in terms of compartments.

Compartments are de�ned in network topology as sets of nodes with many internal

links and few external links. �is prior work suggests that compartments promote sta-

bility by slowing the propagation of disturbances. However, Baskerville et al. argue that

trophic guilds – “sets of species that feed on, and are fed on, by similar sets of species”

– are more important to ecosystems than compartments. �ey focus on a more general

concept, the group. �e directional relationship between two groups i and j is the proba-

bility that a species in group i is eaten by a species in group j. Using a Bayesian network

model with Markov-chain Monte Carlo sampling, they determine the most probable as-

signment of species to groups. �ey �nd that a detailed group structure emerges, where

groups largely correspond to known trophic guilds. �e high taxonomic resolution of

plant species in their food web data allows the group model to reveal pa�erns of spatial

15

coupling between groups, supporting ideas proposed by others.

Mu�il and Chau (2007) [11] describe the use of arti�cial neural networks (ANN)

and genetic programming (GP) to identify variables that can be used to predict harm-

ful algal blooms (HAB). �e “red tide”, a type of HAB, results from eutrophication and

increases in salinity and temperature, and has serious negative consequences including

mariculture loss due to oxygen depletion, anoxia, and shell�sh poisoning. �ey use data

from Tolo Harbor in Hong Kong, where the red tide has been a persistent problem due

to pollution including municipal and livestock waste discharge. �e data include vari-

ables measuring water nutrient content, water quality, water temperature, climate, and

chlorophyll-a (chl-a) as an indicator of algal biomass. Including time-lagged versions

of these variables results in a total of 63 variables. �ey apply ANN and GP – sepa-

rately, in independent experiments – to do feature selection and identify the variables

which are the most signi�cant predictors of algal biomass. Both ANN and GP learn cor-

related pa�erns between input and output variables in nonlinear and complex data, and

account for interaction between variables that are not signi�cant individually, making

the techniques well-suited to ecological modeling. GP operates on parse trees describing

functions of the input variables. �e initial parse trees are randomly generated, and then

iteratively altered and selected for “�tness” – accurate prediction of the output variables.

�ese alterations include random mutation and crossover, or random swaps of sub-trees

between selected individual trees. To use GP for feature selection, the authors de�ne a

signi�cance measure to be the number of times an input variable is selected in one of

16

these parse trees. To use ANN for feature selection, they create an ANN with 63 input

nodes – one corresponding to each input variable – and one output node, chl-a. A�er

training the ANN, they determine the signi�cance of each input variable by computing

the sum of the absolute values of the connection weights from the corresponding in-

put node to all hidden nodes. �ey validate this methodology by applying it to feature

selection of the Bernoulli’s equation from �uid mechanics, supplying the ANN and GP

models with random input variables in addition to true values for its actual inputs and

output. Both models successfully identify the real input variables, as determined by the

authors’ signi�cance measures. However, their main conclusion – that time-lagged chl-a

is enough to predict the future quantity of chl-a in the harbor with reasonable accuracy

– seems dubious, given the established links between human activity and HABs in the

area.

Shan et al. (2006) [12] explore four machine-learning algorithms – decision trees,

arti�cial neural networks (ANN), support vector machines (SVM), and genetic program-

ming (GP) – to analyze data describing the habitat, abundance, and spatial distribution

of the southern brown bandicoot in South Australia. Counts of “diggings” are used as

an indicator of abundance by location. �ey a�empt to identify relationships between

bandicoot population and vegetation, soil, �re history, and geomorphology. �ey note

that the small size and highly skewed nature of this dataset has made it very di�cult

to analyze in the past, and they perform their analyses on both the original (unbal-

anced) dataset and on a resampled dataset that balances class distribution. �ey �nd

17

that while SVM and ANN perform marginally be�er, the output of decision trees and

neural networks is more readily interpretable by humans. Given the fairly poor overall

predictability of the data using any of the models, they therefore favor decision trees

and ANNs for their interpretability.

Gutenkunst et al. (2007) [13] describe the common pa�ern in systems biology mod-

els that they call parameter “sloppiness.” In many of these models, which are generally

nonlinear and have many parameters, a collective �t to the observed data can be ob-

tained without tightly constraining individual parameter values. “Sloppiness” refers to

the ability of parameters, individually or in combination, to move through ranges of

values without signi�cantly altering model behavior. �e authors test this idea by per-

forming sensitivity analyses of 17 di�erent published systems biology models. �ey

�rst de�ne a measure χ 2
for comparing model output under the published parameter

values with model output under varied parameters. �ese models produce sets of time

series data as output, much like ATN models, and χ 2
is essentially a continuous mean

squared error calculation comparing all of the time series produced by the model under

the original and altered parameters. �ey then de�ne a Hessian matrix H
χ 2

j,k
, where the

rows j and columns k correspond to model parameters θj and θk .
1

�e authors argue

that models can make useful predictions based on collective �ts even while uncertainty

remains about individual parameter values, provided that sensitivity analysis has been

1
A Hessian matrix is a square matrix containing all of the second-order partial derivatives of a func-

tion. Each row and column corresponds to a variable in the function. �e eigenvalues of a Hessian matrix

evaluated at a point of the function indicate whether the function is curved up or down at that point, if

the point is a saddle point, or if the curvature cannot be determined without further information.

18

done to quantify these uncertainties. Further, they argue that determining parameter

values from collective �ts is di�cult due to parameter sloppiness. Finally, they point out

that direct parameter measurements are o�en impractical for sloppy models, because the

required measurement precision is determined by the smallest dimension of the region

of “slop” within the parameter space.

Berlow et al. (2009) [14] apply classi�cation and regression trees (CART) and ATN

models to the problem of predicting interaction strengths between pairs of species in

food webs. �ey de�ne the interaction strength I between two species T and R as the

change in time-averaged total biomass ofT when R is removed from the food web. �is

essentially represents the extinction of species R, but the authors note that the same

methods could be extended to study other phenomena such as over-harvesting. �ey

also analyze per-capita I , which measures interaction strengths in terms of population

density rather than total biomass. Using 600 food webs generated by the niche model,

each with 10-30 species, they remove one species at a time and calculate the interaction

e�ects on all other species. �e resulting data, including 90 independent variables and I

as the dependent variable, is used to train a CART model. �e algorithm selects only 7

signi�cant variables to build a model that explains over 86% of the variance in I . Large

(positive negative) values of I are observed when bothT and R have high biomass, a low

degree of separation, and only one network path between them. A CART model using

log |I | as the independent variable yields an even simpler model, with two variables

explaining over 66% of the variance: the log of the biomass of T with R present and

19

the log of the biomass of R. A CART model based on per-capita I produces a similarly

simple model, with R’s body mass and biomass and T ’s biomass predicting most of the

variance. �e authors point to the remarkable fact that seemingly important variables,

such as consumer-resource body size ratio and functional response type, provide li�le

explanatory power, and that the results hold regardless of network structure. �ey also

argue that trophically-driven species interactions are well-predicted by ATN models, and

that if model output di�ers from observed data, it can be inferred that nontrophic factors

in the ecosystem are signi�cant. �ey support these arguments using a �eld experiment

in an intertidal ecosystem including 3 primary species: whelks, mussels, and barnacles,

in which the barnacles are known to have nontrophic mediating e�ects, and �nd that the

ATN model makes accurate predictions when the mussels are removed, but less accurate

predictions when they are present.

Boit et al. (2012) [6] acknowledge that progress in accurately modeling empirically

observed population dynamics has been slow, but describe their own successful experi-

ment in ��ing a modi�ed ATN model to empirical biomass data. �e ecosystem studied

is that of Lake Constance, a large and deep lake in central Europe inhabited by a rich

community of plankton and �sh. Lake Constance has been well-studied, and detailed

data was collected on a weekly or bi-weekly basis between 1987 and 1996. Strong sea-

sonal e�ects controlling plankton growth are observed there. �e researchers �rst de-

�ned a food web consisting of 24 guilds and 107 feeding relationships, then constructed

a dataset representing an average year, and �nally made iterative re�nements to the

20

ATN model until a good �t to the observed data was achieved. �ese re�nements are

based on knowledge of factors speci�c to Lake Constance, but many also generalizable

to other ecosystems, and include the following: lowered metabolic and growth rates

for prokaryotes, deviating from strictly allometrically scaled values; separate metabolic

rates for respiration vs. biomass production; prey resistance; a closed detrital loop; and

abiotic forcing, which refers to the physical factors that dominate species abundance in

a seasonal pa�ern such as irradiance, vertical mixing, and temperature changes. �e

authors largely achieved a good �t to the observed data based on a number of similar-

ity measures, and their work suggests a general strategy for applying ATN models to

natural ecosystems.

In her master’s thesis, Co�er (2015) [15] describes her work toward ��ing ATN mod-

els to empirical data. To this end, she applies and integrates two approaches, machine

learning and gami�cation, to identify parameter changes that signi�cantly a�ect species

biomass in simulated food webs. Her approach to the machine learning component can

be described as follows: She �rst generated 482 random food webs, and then generated

an additional counterpart to each one, which was nearly identical except for a random

parameter change. Based on the simulated data for each ecosystem and its altered coun-

terpart, she calculated a number of species-speci�c dependent variables, each describing

a characteristic in the data for that species that di�ered between the original and altered

versions. �ese dependent variables are average biomass, linear regression slope, peak

biomass, time of peak, time of extinction, and biomass curve wavelength. She then used

21

the CART algorithm (following the example of Berlow et al. (2009) [14]) to build a model

for predicting changes in these measures based on the ATN model parameters, as well

as several a�ributes computed from the data, and an encoding of the parameter change

between the original and altered ecosystems. She found that change in average biomass

was predictable based on all 3 primary ATN parameters (metabolic rate, growth rate, and

carrying capacity). She incorporated these �ndings into the Convergence game, which

she developed, as ‘hints’ to guide players as they adjust parameters with the objective

of visually ��ing matching biomass curves of a simulated ecosystem to a target graph.

In developing the Convergence game, which she built based on the World of Balance

codebase, Co�er sought to use gami�cation to help �t ATN models to real ecosystems,

and secondarily to evaluate the usefulness of the machine-learning-based predictions

presented to the players as hints. Regarding directions future work, Co�er suggests im-

provements to the game’s user interface, including providing more visual information

based on the ATN model and more actively displaying hints, incorporating species link

parameters into the analysis, incorporating a local implementation of the ATN engine

to mitigate latency issues, and incorporating empirical data for the target graphs, rather

than relying on simulated target ecosystems.

22

Chapter 4

Experimental Methods, Implementation,

and Analysis

In seeking to optimize ATN models through machine learning and gami�cation, we have

developed novel algorithms, implemented so�ware for simulation and analysis, explored

how ATN models respond to changes in various parameters, made improvements to

the World of Balance game so�ware, developed understanding of various aspects of

ATN model behavior, and applied machine learning to the data to various ends. �is

chapter describes that work in conceptual sequence, grouped by activity, presenting the

background, methods, and results of each activity together.

Food webs are the ecological foundation of this work and are required input for

ATN model simulations and for the World of Balance games. �erefore, we begin by

describing algorithms for generating food webs for analysis using graph sampling to

draw species from the larger Serengeti food web used in World of Balance (Section 4.1).

23

Only a subset of the ATN parameters are controlled by players and provided as data

in our machine learning experiments. However, other parameters are in need of of ex-

ploration and require default values when they are held �xed. In Section 4.7, we explore

the e�ects of the functional response control parameter q. In Section 4.6, we explore a

parameter that enables an alternative model of producer carrying capacity.

In order to evaluate simulated ecosystems and give players feedback about their in-

game ecosystems, we need ways of measuring and reporting ecosystem health. Sec-

tion 4.2 describes existing and newly developed ecosystem health measures that are

calculated from the biomass data produced by ATN simulations.

�e Convergence game [15] within World of Balance applies gami�cation to the

problem of ��ing ATN model parameters. While this gami�cation approach shows

promise, it remains di�cult for players to navigate the parameter space. In Section 4.3,

we describe a way of identifying the more promising regions of the parameter space and

providing this information as guidance to players.

One of the overarching goals of this work is learning how to parameterize ATN

models representing stable ecosystems. We �nd that ATN model simulations can reach

steady states a�er which no further extinctions occur, a key observation that informed

subsequent experiments. Section 4.4 provides the theoretical foundation and hypothe-

ses about the di�erent kinds of steady states that can occur. Section 4.5 describes how

they are detected during simulation. We also �nd that simulations can reach persistent

chaotic states that depend on the value of the q parameter, as described in 4.8.

24

�e Convergence game’s library of simulated ecosystems requires expansion to gain

more information from player interaction. �e biomass data for these ecosystems should

be both sustaining and visually interpretable. In Section 4.9, we describe a method,

based on steady-state detection, of automatically generating such ecosystems when a

predetermined food web size and composition is not required.

Section 4.10 describes our most direct approach to using machine learning to search

the parameter space for sustaining ecosystems, synthesizing the insights described in

the previous sections. Finally, Section 4.11 evaluates a way to use this parameter space

search process to help generate Convergence ecosystem data.

4.1 Graph sampling for food webs

4.1.1 Food webs as graphs

A food web can be represented as a directed graph. Each node in this graph typically

represents a species, but can also represent another grouping of organisms, such an eco-

logical guild or a general type of plant resource (e.g. seeds or fruit). Each edge represents

a predator-prey relationship. �e direction of the edges is from prey to predator, rep-

resenting the direction of energy �ow. �e graph may contain self-loops (edges from a

node back to itself), representing cannibalism. It is also possible for the graph to contain

longer cycles with multiple nodes.

Figure 4.1 illustrates a food web as a directed graph. �e node Grass and Herbs, in

25

Figure 4.1: Food web consisting of a producer and four consumer species inhabiting the

Serengeti ecosystem

graph theory terms, is a source node: a node with no in-edges. In ecological terms, it

is a producer: it produces energy that enters the food web via photosynthesis. (If it

represented a single species of grass, it could also be called a basal species). �e other

nodes are called consumers: they consume the energy that is provided by their prey. Tree

Mouse and Crickets exhibit cannibalism, represented by self-loops.

We de�ne a food chain in graph theory terms as a directed simple path from a source

node to another node. In graph theory, a simple path is de�ned as a path with no repeated

nodes. For example, in Figure 4.1, Grass and Herbs → Crickets → African Grey Hornbill

is a food chain, as is Grass and Herbs → Crickets → African Grey Hornbill → African

Clawless O�er. Just as there can be multiple simple paths from a source node to another

node, there can be multiple food chains from a producer to a consumer, and a node can

be part of multiple food chains.

26

4.1.2 Graph sampling and “subwebs”

�e full Serengeti food web used in the World of Balance game consists of 87 di�erent

species and plant resources. For purposes of analysis, as well as for playability of the

Convergence Game, we needed to generate smaller food webs based on this large set of

species. Since a food web is a directed graph, what we needed were directed subgraphs.

�e process of generating subgraphs that are somehow representative of a larger

graph is called graph sampling. �e sampled subgraphs must meet certain criteria, which

depend on the problem domain. We call the subgraphs in our problem domain food

subwebs or simply subwebs. �ere are three basic criteria for a directed graph to be a

valid representation of a food web or a subweb as we de�ne them.
1

1. It must have exactly one connected component.

2. For every non-source node u, there must exist a simple path from a source node

to u.

Criteria 1 means that the graph represents a single food web, not multiple food webs.

Criteria 2 means that there are no incomplete food chains; that is, every species either

has prey, or is a producer. Otherwise, that species will certainly go extinct.

A food subweb sampled from a larger food web must meet these criteria. Addition-

ally, as we de�ne it here, a subweb must contain all possible trophic links from the food

web involving the species in the subweb. More formally:

1
�ere exist more complex de�nitions of various types of food webs in graph theory terms; see the

niche food webs and interval graphs of Cohen (1978) [16] for example.

27

3. If the subgraph contains nodes u and v , and if a directed edge (u,v) exists in the

full graph, in the subgraph must also contain (u,v). Furthermore, if u andv are in

the subgraph and the full graph contains a directed edge (v,u), then (v,u) must

also be present in the subgraph. �is means that if a pair of species in the full food

web has a predator-prey relationship, and both species are included in the subweb,

then that relationship must be preserved in the subweb.

�is also applies to cannibal species: the formal de�nition holds if u = v .

4.1.3 Random connected induced subgraphs

Clearly, sampling the full graph by choosing nodes and edges at random is not guaran-

teed to result in a subgraph that meets the above criteria. As a �rst step, one might use

a random sampling algorithm that results in one connected component. Algorithm 1

builds a subgraph starting from a randomly selected node in the full graph G. It itera-

tively grows outward by adding randomly selected neighbors of the current subgraph.

�e �nal subgraph S is induced in G by the set of nodes selected in this way, which

means that for every ordered pair of vertices (u,v) in S , if the edge (u,v) is in G, then it

is also in S . �us, S satis�es criteria 3. Growing the graph outward also ensures that the

subgraph is fully connected. �us, S satis�es criteria 1.

28

Algorithm 1 Induce a random connected subgraph. G is the full graph, and N is the

desired subgraph size. Assumes G is connected and N ≤ |G .nodes |.

procedure RandomConnectedInducedSubgraph(G, N)

S ← (∅,∅)
S .nodes ← random node in G
while |S .nodes | < N do

candidates ← ∅
for all n ∈ S .nodes do

candidates = candidates ∪ (n.neiдhbors − S .nodes)

S .nodes ← S .nodes ∪ {n}
S .nodes ← S .nodes ∪ (random node from candidates)

for all (u,v) ∈ G .edдes do
if u ∈ S .nodes and v ∈ S .nodes then

S .edдes ← S .edдes ∪ (u,v)

return S

4.1.4 Random successor subgraphs

Algorithm 1 does not always produce subgraphs that meet criteria 2, because there is

nothing to ensure that it includes any source nodes from the full graph. Algorithm 2

is an alternative that solves this problem. It begins by selecting a speci�ed number M

of source nodes at random. On each iteration, it randomly selects a node which is a

successor to a node currently in the subgraph. Like algorithm 1, it adds edges at the end

by inducing the �nal subgraph using the selected nodes. �is ensures that criteria 3 is

met.

Unfortunately, the resulting subgraph is not guaranteed to meet criteria 1 ifM > 1. It

selects M source nodes at random, and builds connected components starting from each

29

of these source nodes. �ese M components may or may not happen to connect in the

end. �eoretically, for some values of N and the minimum path length between source

nodes, it is impossible to produce a subgraph with exactly one connected component.

In practice, with the 87-species Serengeti food web, this problem can be solved simply

by re-running the algorithm until it produces a one-component subgraph.

It is possible for the algorithm to fail if, during some iteration, no candidate successor

nodes are found. Again, this can be solved by re-running the algorithm until it succeeds.

In practice, with the Serengeti food web, this does not happen o�en.

Algorithm 2 Induce a random successor subgraph. G is the full graph, N is the desired

subgraph size, and M is the number of source nodes to include.

procedure RandomSuccessorSubgraph(G, N , M)

S ← (∅,∅)
S .nodes ←M random source nodes from G
while |S .nodes | < N do

candidates ← ∅
for all n ∈ S .nodes do

candidates ← candidates ∪ (n.successors − S .nodes)

if candidates = ∅ then
return failure

S .nodes ← S .nodes ∪ (random node from candidates)

for all (u,v) ∈ G .edдes do
if u ∈ S .nodes and v ∈ S .nodes then

S .edдes ← S .edдes ∪ (u,v)

return S

30

4.1.5 Depth-controlled random subgraphs

In addition to the three minimal criteria described above, a subweb should be some-

how representative of the full food web. Algorithm 2 can produce subwebs with many

species that feed on plants but lack predators, which is not representative of the 87-

species Serengeti food web, and can result in unstable population dynamics. Algorithm 3

addresses this issue. In each iteration, before selecting a random successor to add to the

graph, it �rst tries to add a successor of a node v for which the following are true:

1. In the full graph G, v has an in-edge from a source node u which is present in the

subgraph S .

2. �ere is no directed edge (v,w) in G for any node w in S .

In the context of food webs, v represents a species that eats plants but has no preda-

tors in S . �e algorithm identi�es these “predator-free plant eaters,” then adds the preda-

tors of each one to a list of candidates to add to S . If no candidate predators were identi-

�ed this way, the iteration proceeds similarly to algorithm 2 by adding all successors of

the nodes in S to the list of candidates. It then selects a random node from the candidate

list and adds it to S .

In this algorithm, candidates starts out as a list instead of a set – that is, it allows

duplicates. If a candidate node is a predator of multiple “predator-free plant eaters”, then

it will be added to the list multiple times, thereby increasing the probability that it will

be selected.

31

�is algorithm is not guaranteed to produce a subgraph that has no “predator-free

plant eaters”. One reason is that S may reach size N before their predators can be added

to the graph. Another is that some plant-eaters, such as the African elephant and the

hippopotamus, have no predators in the 87-species Serengeti food web.

By virtue of including more predators of plant-eating species, algorithm 3 can result

in more stable subwebs. �e populations of plant-eating species can grow exponentially

if there are no predators to control them, resulting in a cascade of extinctions later in

the simulation.

Like algorithm 2, algorithm 3 may produce a subgraph with multiple isolated com-

ponents. However, the single-component subgraphs it produces meet all three criteria,

are more representative of the full food web, and are more likely to be stable.

32

Algorithm 3 Induce a depth-controlled random successor subgraph. G is the full graph,

N is the desired subgraph size, and M is the number of source nodes to include.

procedure DepthControlledRandomSuccessorSubgraph(G, N , M)

S ← (∅,∅)
producers ←M random source nodes from G
S .nodes ← producers
while |S .nodes | < N do

candidates ← empty list

for all n ∈ S .nodes : (n.predecessors ∩ producers , ∅) do
if (n.successors − n) ∩ S .nodes = ∅ then

Append (n.successors − S .nodes) to candidates

if candidates is empty then
candidates ← ∅
for all n ∈ S .nodes do

candidates ← candidates ∪ (n.successors − S .nodes)

if candidates = ∅ then
return failure

S .nodes ← S .nodes ∪ (random node from candidates)

for all (u,v) ∈ G .edдes do
if u ∈ S .nodes and v ∈ S .nodes then

S .edдes ← S .edдes ∪ (u,v)

return S

33

4.1.6 Results

Because of its ability to produce subgraphs that are valid food webs including high-

trophic-level predators, we chose algorithm 3, DepthControlledRandomSuccessor-

Subgraph, to generate the subwebs used in most of the work described in the following

sections. Figure 4.2 shows several subwebs generated by the algorithm.

Table 4.1 summarizes the performance of our implementation of the algorithm for

the values of N and M used for the examples in Figure 4.2, and also for larger subwebs

of size 15 and 20. It reports the average time to produce a valid subweb and the average

number of retries required. �e numbers are averaged across 10,000 executions for each

subweb size, where each execution includes any retries required to obtain a valid subweb.

We implemented the algorithm in Python using the NetworkX graph library, version

1.11. As of that version, NetworkX itself is a pure Python library. �is implementation

performs acceptably well for generating the number of and size of subwebs required in

our work, despite being implemented in a high-level language.

Table 4.1 shows that the number of retries required is related to the subweb size in

an interesting way. For a given value of M (the number of source nodes), increasing

N (the subweb size) decreases the number of retries required. �is is likely due to the

fact that adding nodes to the graph increases the likelihood of connecting the M initial

components.

34

N M Avg. runtime (ms) Avg. retries

5 1 0.298 0.205

6 1 0.348 0.202

7 2 0.910 1.563

8 2 0.929 1.276

9 3 1.999 3.522

10 3 1.998 2.932

15 3 2.284 1.655

20 4 5.044 2.987

Table 4.1: Performance of DepthControlledRandomSuccessorSubgraph imple-

mentation. N is the subweb size, and M is the number of source nodes. Run times

and retry counts were averaged over 10,000 calls to the function, each of which returned

a valid subweb. �e timings were run on a 2015 MacBook Air with a 2.2 GHz Intel Core

i7 processor.

35

Figure 4.2: DepthControlledRandomSuccessorSubgraph examples. Node colors

represent trophic levels within the larger Serengeti food web, increasing from green

(1) to red (approx. 3.5). Edge direction is indicated by the thick portions of the lines, and

a small “C” to the le� of of a node represents cannibalism.

36

4.2 Measuring the health of simulated ecosystems

One of our main goals is to learn how to generate healthy ecosystems. To this end, we

wish to provide players of World of Balance with information about the health of their

ecosystems. Also, we wish to identify target variables to optimize and to predict with

machine learning models. To enable this, we need well-de�ned measures of ecosystem

health that can be computed from the food web structure and the output data from ATN

model simulations.

In this section, we explore two measures of ecosystem health (the Environment Score

and the Revised Environment Score) that we can use for these purposes.

4.2.1 Oscillating pa�erns in biomass

Many simulated ecosystems exhibit oscillating pa�erns in species biomass, as can be

seen in Figure 4.3. Based on personal communications with Neo Martinez, who has

authored many papers based on ATN models, and ecologist S. Jonathan Stern, these

kinds of pa�erns are normal and re�ect the population cycles found in nature. �e size

of a predator population tends to follow the size the population of its prey. As the prey

population increases, the predators have more to eat, leading to an increase in predator

population. �e growing predator population consumes the prey at an increasing rate,

until that rate exceeds rate at which the prey can reproduce. �is leads to a decline in the

prey population, leaving the predators with less to eat, which in turn leads to a decline

37

in the predator population. With fewer predators to limit the prey population, the prey

population begins to increase again, and the cycle repeats.

Figure 4.3: Example of simulation with oscillating biomass

Kendall et al. (1998) [17] measure the prevalence of these cyclic pa�erns in the pop-

ulations of 220 animal species from Global Population Dynamics Database. �ey �nd

that about 29% of populations are cyclic, and that 70% of mammal and �sh species have

at least one cyclic population worldwide. We �nd that the amplitudes of the oscillations

in our data are consistent with the measurements of Kendall et al.

�e ecosystem health measures we describe in this section tend to follow these os-

cillating pa�erns when they occur. For some purposes, we need to control for the os-

cillations to get a higher-level picture of ecosystem health. For the World of Balance

lobby, we apply a moving average smoothing function to the Revised Environment Score.

38

When using the environment score for machine learning classi�cation in Section 4.3, we

calculate a linear time trend of the score over the duration of each simulation.

4.2.2 �e original World of Balance Environment Score

�e World of Balance lobby is the central hub of the game, and includes important

gameplay elements of its own. Players purchase tiles, or regions located on a shared

world map, and build ecosystems in these tiles by purchasing species. �e populations

of species in player ecosystems evolve over time based on ATN simulations. Players are

shown a score, called the environment score, that represents the current health of their

ecosystems.

Until recently, the formula to calculate the environment score for a player’s ecosys-

tem was as follows:

EnvironmentScore =

5 log

2

*
,

N∑
i=1

bi

(
Bi
bi

)Ti
+
-

2

+ N 2

(4.1)

where N is the number of species in the food web, bi is the per-unit (individual)

biomass of species i , Bi is the current total biomass of species i , and Ti is the trophic

level of species i . Square brackets indicate rounding to the nearest integer.

�is score formula is intended to reward an ecosystem including many species (di-

versity) as well as the presence of high trophic level species (top predators, which are

recognized as indicators of ecosystem health). By raising the number of individuals
Bi
bi

of

a species to the power of the trophic level of the species, it also rewards a large number

39

of individuals.

4.2.3 Revised Environment Score

�ere are some potential disadvantages to the original environment score formula, be-

cause it can assign far more weight, by orders of magnitude, to some species than others.

Speci�cally, a species with a very small body size and/or high trophic level can dwarf

the score contributions of the other species. Another potential issue is that body sizes

in the World of Balance database were determined by estimation or educated guesses,

rather than taken from published data; therefore, their signi�cant in�uence on the score

is problematic.

We propose a revised environment score that avoids these issues while meeting the

following objectives:

• Rewards high biomass levels

• Rewards presence of high trophic level species

• Rewards diversity

• Is signi�cantly in�uenced by the biomass of each species

• Is interpretable by the player

�e alternative score has two components: a biomass score and a diversity score.

40

Trophic-level-weighted biomass score

To reward high biomass and high trophic levels, the total biomass weighted by trophic

level is calculated as follows:

BiomassScore =
N∑
i=1

TiBi (4.2)

Diversity score

To reward species diversity, the Shannon index is incorporated into the score. �e Shan-

non index is a standard measure of ecological diversity, originally developed by Claude

E. Shannon (1948) as a measure of entropy in text strings [18]. For the score, we use a

version based on species biomass instead of population density:

Shannon = −
N∑
i=1

pi log
2
pi (4.3)

where pi is the biomass of species i as a proportion of the total biomass in the ecosys-

tem:

pi =
Bi∑N
j=1

Bj

(4.4)

�is Shannon index ranges from 0 to log
2
N . It achieves its maximum value for

N species when their biomasses are in equal proportion. �us, it increases both with

species count and with evenness of species proportions. However, it does not increase

41

with the total biomass in the ecosystem as a whole. So, in order to map it to a range com-

parable to the biomass score, we multiply it by the weighted total biomass to calculate

a diversity score:

DiversityScore = BiomassScore × Shannon (4.5)

Total score

�e total Revised Environment Score is the sum of the biomass score and the diversity

score, or equivalently:

RevisedEnvironmentScore = BiomassScore × (1 + Shannon) (4.6)

Environment score smoothing

Both the original and proposed environment score formulas follow �uctuations in biomass.

It is desirable to smooth out these �uctuations so that players are rewarded for achiev-

ing a good environment score, even if species biomasses are �uctuating. We examined

several methods for calculating a smoothed environment score, all of which can be pa-

rameterized to perform more or less smoothing:

• Simple moving average: the average of the raw score over the previous N time

steps.

42

• Trianglemoving average: a weighted average of the raw score over the previous

N time steps, where the weights decrease linearly to zero at the oldest value.

• Feedback�lter: a �rst-order feedback �lter. Each output value is equal to the cur-

rent input value multiplied by a coe�cient, plus the previous output value times a

coe�cient. �is is a weighted moving average with in�nite history, but the weight

of each previous value decreases exponentially with time.

• Decay rate limit: the score can increase at any rate, but the rate at which the

score can decrease is limited to a �xed threshold fraction of the previous value.

Figure 4.4 illustrates the behavior of these methods on a simulated ecosystem, using

the revised environment score.

Down-scaling the environment score

We observed that the alternative environment score can produce very large numbers

that may be di�cult for players to interpret. We considered several ways of scaling

down the score. One possibility is to scale it linearly, in which case all that is needed is

a suitable multiplier based on typical player-created ecosystems.

A second possibility is to use non-linear scaling by taking some root of the score.

�is root-based scaling would result in scores changing more quickly when small, and

more slowly when large, when compared to the unscaled score or linear scaling. We �nd

that taking the square root e�ectively controls the range of the score throughout a large

range of ecosystem biomass.

43

Figure 4.4: Comparison of environment score smoothing methods. “Total score” indi-

cates the raw score, before smoothing.

As of this writing, World of Balance implements the revised environment score with

triangle average smoothing and down-scaling using a square root and a scalar multiplier.

4.2.4 Comparison of environment score formulas

Figures 4.5 and 4.6 compare the original environment score with the smoothed and scaled

revised environment score. For smoothing, we used the triangle moving average with a

window size of 100. For down-scaling, we took the square root of the smoothed score

and multiplied by 10. Both �gures demonstrate the stair-step e�ect of rounding for the

original score.

44

In Figure 4.5, the original environment score is in�uenced primarily by the greater

bushbaby, because of its small body size. �e leopard, despite having a higher trophic

level, contributes relatively li�le to the original environment score due to its larger body

size. In contrast, the revised environment score has a smaller variance and demonstrates

a more even set of contributions from all species.

In Figure 4.6, the original environment score is largely determined by the katydids

and southern ground hornbill. �e katydids have a smaller trophic level than the south-

ern ground hornbill, but have a much smaller body size, leading to a signi�cant con-

tribution to the original score. �e e�ect of the grains and seeds on the original score

is negligible, because it has trophic level 1. In contrast, the revised score does take the

grains and seeds into account, though to a lesser degree than the animals. �e in�uence

of the grains and seeds on the score re�ects the fact that producer biomass will posi-

tively in�uence consumer biomass, leading to a healthier ecosystem. All species have

an in�uence on the revised score.

45

Figure 4.5: First comparison of environment score formulas. In the legend, T indicates

trophic level and B indicates body size.

Figure 4.6: Second comparison of environment score formulas. In the legend,T indicates

trophic level and B indicates body size.

46

4.3 Identifying parameter range hints for the Convergence

game

To produce the target graphs for Multiplayer Convergence, we sought to improve the

data used for the original Convergence game and to determine ranges of parameter val-

ues likely to produce desired outcomes and be displayed to players as hints. We propose

a 4-step process for each target graph, consisting of (1) species selection, (2) parame-

ter space exploration and simulation, (3) machine-learning classi�cation of simulation

results, and (4) derivation of parameter ranges to display as game hints.
2

4.3.1 Species selection

We use algorithm 3, DepthControlledRandomSuccessorSubgraph, to select a subset

of species from the Serengeti food web that form a viable food web including high-

trophic-level predators. Call this food web F .

4.3.2 Parameter space exploration and simulation

We explore the parameter space of food web F by running 2,000 simulations with ran-

domized parameter values. �is step has three goals: (a) to identify the parameter values

that produce the best target graph (b) to select the values for initial biomass that will be

2
�is section is an extended explanation and evaluation of the approach we presented at the 2016

Computational Sustainability Conference (CompSust-2016).

47

used for subsequent simulations, and (c) to produce a training set for the classi�cation

of step (3). We do this in two batches of 1,000 simulations in which parameters are ran-

domly varied according to di�erent rules. �e �rst batch addresses goals (a) and (b), and

the second batch addresses goal (c).

Initial batch: selecting target graph and initial biomass values

In the �rst batch of 1,000 simulations, we set the parameter values for each simulation

FS as follows:

• �e metabolic rate for consumer i , xi , is drawn from a uniform random distribution

between 50% and 150% of its default value. �e World of Balance database contains

default parameter values for each species, including xi , based on measurements

and established models of metabolic rates.

• �e carrying capacity for producer i , Ki , is drawn from a uniform random distri-

bution between 1,000 and 15,000. �is is the range of values made available to the

player in the Convergence games.

• �e initial biomass of each species is drawn from a uniform random distribution

between 100 and 5,000. �is is an intentionally wide range, but not so wide that it

should result in biomass values that cause visibility issues when displayed on the

same graph.

• Other parameter values are �xed at their defaults. �e player can only manipulate

48

a limited set of parameters in the Convergence games (xi and Ki).

We run each simulation FS for 1,000 time steps.

A�er the simulations complete, for each simulation FS , we calculate the original

World of Balance environment score (see Equation 4.1) as a time series. We then cal-

culate the linear time trend of the score time series. When calculating this trend, we

exclude the �rst 200 time steps (personal communications with Dr. Neo Martinez sug-

gested that the initial 100 time steps or so are o�en discarded to allow the food web

dynamics to se�le). We interpret this trend value as a measure of ecosystem health: a

greater value means that the health of the ecosystem is improving over time.

We choose the simulation with the greatest environment score trend F ∗S for the target

graph. We also select the initial biomass values from F ∗S as the �xed values to use for

subsequent simulations. (�is is because Convergence players are not able to manipulate

initial biomass values.)

Second batch: generating training set

Again, we generate a batch of 1,000 simulations. �e parameter values for each simu-

lation FS in this batch are determined as in the �rst batch, except for the initial biomass

values. �ese are kept �xed at the values of the target graph. �is batch is used in

training the classi�er model in the next step.

49

4.3.3 Machine-learning classi�cation of simulation results

Using the data from the second batch of simulations above, we train a machine learning

classi�cation model to predict the ecosystem health trend based on model parameters.

We �rst compute the quartiles of the ecosystem health trend values of all 1,000 sim-

ulations in the training set.

Each simulation FS is assigned one of two class labels, or is le� unlabeled. A label

of “good” indicates that the simulation represents a relatively healthy ecosystem, and a

label of “bad” indicates that the simulation represents a relatively unhealthy ecosystem.

An unlabeled ecosystem is neither exceptionally healthy nor unhealthy. �e label is

determined based on the quartile in which the trend value of FS lies. If it is in the top

25%, it is assigned the “good” label. If it is in the bo�om 25%, it is assigned the “bad”

label. Otherwise, it is le� unlabeled.

�is quartile-based labeling strategy was chosen for three reasons. First, we have no

ecological basis on which to assign “good” and “bad” labels based on absolute values of

the environment score trend – it is purely a relative measure. Second, by using quartiles,

we maintain class balance – there are always 250 observations in each class. �ird,

by excluding the middle 50%, we obtain a wider separation between the classes which

should improve classi�cation performance.

We use the labeled data created in this fashion to train a binary classi�er and to

test the learned classi�cation model. �e simulation’s variable input parameters (xi for

consumers and Ki for producers) provide the features needed to train the classi�er. We

50

employ a decision tree classi�er, speci�cally, Weka’s implementation of the C4.5 algo-

rithm [19, 20] to learn an ecosystem health classi�cation model.

While classi�cation accuracy is not the focus of this experiment – we seek to identify

promising parameter ranges, rather than to use the model to make predictions directly –

we cannot derive good parameter ranges from an inaccurate classi�cation model. �ere-

fore, we test the learned model with a test set generated based third batch of 1,000 sim-

ulations in which parameter values are drawn from the same distributions as in the

training set, and whose class labels are assigned based on the same quartiles computed

from the training set. In Section 4.3.5, we present classi�er test results for three food

webs.

4.3.4 Derivation of parameter ranges to display as game hints

We use the structure of the trained decision tree classi�er models to derive and evaluate

parameter ranges to display as hints in the game. Each node in a binary decision tree

represents a branching criterion on the input a�ributes that distinguishes the data in-

stances in the le� subtree from those in the right subtree. �ese criteria are chosen by

the decision tree learning algorithm to maximize the predictive accuracy of the tree on

the training data. For real-valued input a�ributes such as the ATN parameters, each cri-

terion consists of a parameter name and a threshold value that separates the instances

in the two subtrees. �us, for each each parameter there is a (possibly empty) set of

threshold values given by the decision tree nodes which have been chosen to e�ectively

51

separate “good” from “bad” instances.

We will use the decision tree in Figure 4.7 as an example. (�is is the decision tree

produced from the 5-species food web we evaluate in Section 4.3.5). �ere are �ve pa-

rameters represented in the tree: K3, X28, X51, X73, and X86. K3 is only used to split

the tree once, so the set of threshold values forK3 contains the single value 6003.88. X28

splits the tree twice, and the associated threshold values are 0.601404 and 0.455708.

We use these threshold values to partition the full range of each parameter π into

sub-ranges. For each parameter sub-range (πlow ,πhiдh], we count the number of “good”,

“bad”, and unlabeled training simulations whose value for parameter π falls between

πlow and πhiдh . Using Figure 4.7 again as an example, the threshold values for X28 de�ne

three sub-ranges: (−∞, 0.455708], (0.455708, 0.601404], and (0.601404,∞). Analyzing

the training data and counting the number of training simulations within these ranges,

we obtain the following counts:

• 95 good, 2 bad, and 44 unlabeled simulations within (−∞, 0.455708]

• 97 good, 11 bad, and 122 unlabeled simulations within (0.455708, 0.601404]

• 58 good, 237 bad, and 334 unlabeled simulations within (0.601404,∞)

Based on these counts, we assign a score to each range (πlow ,πhiдh] as follows. We

estimate the probability that a simulation drawn from within (πlow ,πhiдh] is a “good”

simulation – call this P (дood) – as the number of “good” simulations within the range

divided by the total number of simulations in the range. In our example for X28, for the

52

�rst range, P (дood) = 95/(95 + 2 + 44) ≈ 0.6738. We estimate P (bad) in the same way:

in our example, for the �rst range, P (bad) = 2/(95 + 2 + 44) ≈ 0.0142. �e score for

the range is calculated as P (дood) − P (bad). In our example, the score is approximately

0.6738 − 0.0142 = 0.6596. A positive score represents a promising range – one more

likely to result in “good” simulations than “bad” – while a negative score represents a

non-promising range.

Figure 4.8 illustrates the parameter ranges derived from this example decision tree

and the associated training set. �e plot titled “X28 – simulation outcomes” shows the

counts of simulations within each range. �e plot to the right of that, “X28 – parameter

range scores”, shows the score calculated as P (дood) − P (bad). �e le�most bar in the

la�er plot shows our calculated score of 0.6596.

We select all ranges with a positive score – the promising ranges – to display to

Convergence players as hints.

53

X28 <= 0.601404

| X51 <= 0.14091

| | X28 <= 0.455708: good (11.0)

| | X28 > 0.455708: bad (10.0/1.0)

| X51 > 0.14091

| | X73 <= 0.079958

| | | X86 <= 0.069814: good (22.0)

| | | X86 > 0.069814: bad (5.0/1.0)

| | X73 > 0.079958: good (157.0)

X28 > 0.601404

| X51 <= 0.18639: bad (194.0)

| X51 > 0.18639

| | K3 <= 6003.88: good (56.0/1.0)

| | K3 > 6003.88

| | | X73 <= 0.145747: bad (41.0)

| | | X73 > 0.145747: good (4.0/1.0)

Figure 4.7: A Weka J48 decision tree representation, as displayed by the Weka so�ware.

�e root node is on the le�, and the leaves are on the right. Each line of text represents

an edge in the tree. �e le�er-number token toward the le� of each line represents a

feature in the training set (in our case, the le�er is an ATN model parameter, and the

number is a species identi�er). �e relational operators and decimal values represent

the split criteria. “Good” and “bad” represent the predicted class labels at the leaves. �e

numbers inside the parentheses show the number of training instances reaching each

leaf, and the number of misclassi�ed instances, if any, is shown a�er the slash.

54

Figure 4.8:

Parameter range

evaluation based

on the decision

tree shown in

�gure 4.7. Le�:

number of “good,”

“bad,” and unla-

beled simulations

within parameter

ranges derived from

the tree. Right:

score for each

parameter range.

Green boxes show

promising ranges.

Orange boxes show

non-promising

ranges. Parameter

value boundaries

correspond to the

threshold values

of the decision

tree nodes. Blue

circles indicate the

parameter values

for the top 5 simu-

lations. �eir sizes

descend in rank

order (largest is

best).

55

4.3.5 Evaluation

To evaluate our approach for deriving parameter range hints we followed the 4-step

procedure described above, using three randomly generated food webs consisting of 5,

10, and 15 species. We evaluated the learned classi�cation models on test data, derived

the parameter range hints, and �nally evaluated the potential e�ectiveness of these hints

based on simulated data intended to mimic player behavior.

Performance of the learned classi�cation models

We evaluated the performance of the decision tree classi�ers on test data, as described

in Section 4.3.3. Table 4.2 shows the results. For all three food webs, the classi�ers are

able to very accurately distinguish “good” from “bad” simulations based on our labeling

strategy.

Food web Class Precision Recall F1 score

5 species good 0.951 0.951 0.951

bad 0.959 0.959 0.959

10 species good 1.000 0.996 0.998

bad 0.996 1.000 0.998

15 species good 0.996 1.000 0.998

bad 1.000 0.996 0.998

Table 4.2: Evaluation of ecosystem health classi�cation model

56

E�ectiveness of parameter range hints

A user study to evaluate this approach applied to Multiplayer Convergence was orig-

inally proposed for the fall of 2016. �e players in the study were to be divided into

two groups. �e �rst group would be given the parameter range hints derived using our

approach, while the second group would play without the hints. �e performance of the

two groups would be compared.

�is user study did not take place as planned due to so�ware implementation issues.

However, we performed a preliminary evaluation of the parameter range hints in which

we simulated player a�empts based on the expected behavior of the two groups. To do

this, we treat simulated players as fairly naı̈ve in their choice of parameter values: play-

ers in the control group (who are not shown the hints) select parameter values randomly

from within the entire valid range of each parameter, and players in the test group (who

are shown the hints) select parameter values randomly from within the hint ranges.

(For the test group, if there are no hints for a parameter, then parameter values are se-

lected randomly from the entire valid parameter range.) In reality, Convergence players

are more intelligent and use intuition gained from prior a�empts to inform subsequent

choices of parameter values, but this simple simulation provides a baseline.

We performed this evaluation independently for each of the three food webs from

which we derived parameter ranges above.

To simulate the control group, we generated a batch of 1,000 simulations in which the

xi and Ki parameters were drawn from uniform random distributions across their entire

57

valid range (0 to 1 for xi , and 1,000 to 15,000 for Ki). We calculated the environment

score trend for each simulation.

To simulate the test group, we generated another batch of 1,000 simulations. For

these simulations, if a parameter had a hint range, its value was drawn from a uniform

random distribution within that range. Otherwise, its value was drawn from the entire

valid range for the parameter. Again, we calculated the environment score trend for

each of these simulations.

Our analysis compares the environment score trends between the two groups. �e

null hypotheses is that the environment score trends are no di�erent between the control

and test groups. Table 4.3 shows the means and standard deviations of the trend values

for the three food webs and two groups. As could be expected, the test group has smaller

standard deviations, because its parameter values are constrained to smaller ranges by

the hints. For the 5- and 15-species food webs, the test group performs be�er on average.

Interestingly, the control group performs be�er on the 10-species food web.

To test for a statistically signi�cant di�erence between the means for the two groups,

we use Welch’s t-test. Welch’s t-test, in contrast to the more common Student’s t-test,

does not assume that the groups have equal variance (they do not, according to the

results above). It does, however, assume that the populations are normally distributed,

an assumption we may be violating here. However, given the very high p-values we

�nd, we believe this is not a signi�cant problem. Table 4.4 shows the test statistics and

p-values for the three food webs.

58

Food web Statistic Control group Test group

5 species mean -3.054789 5.358788

std 9.410075 2.236706

10 species mean -5.187572 -6.016333

std 8.226043 2.130220

15 species mean -2.250668 -0.975169

std 5.101375 4.270391

Table 4.3: Comparison of performance of two simulated groups of Convergence players.

�e control group represents players who did not receive hints. �e test group represents

players who did receive hints. �e mean and standard deviation are calculated on the

environment score trend value.

Food web t-statistic p-value

5 species 27.508 1.772 × 10
−127

10 species -3.0842 0.00209

15 species 6.0628 1.6038 × 10
−9

Table 4.4: Welch’s t-test results for the data in Table 4.3

For all 3 food webs, based on the p-values shown, we reject the null hypotheses that

the environment score trend values are the same between the two groups. �e hints do

indeed make a di�erence to player performance in this simulated experiment.

�e mixed results showing decreased performance on one of the food webs, however,

indicate that further modi�cations and analysis of the approach are required before the

hints can be expected to improve actual player performance in the game. One likely

issue is that the static ranges for each parameter do not include information about how

the parameters interact with each other. As we have described, ATN models represent

59

the complex, highly interdependent nature of ecosystems. Parameter values, therefore,

do not have independent e�ects. Rather than parameter ranges, we should be examin-

ing promising regions of the parameter space. (We pursue this line of thought in Sec-

tion 4.10). From a gameplay perspective, this would require some kind of dynamic, inter-

active system for displaying hints that would allow the players to navigate the parameter

space with more information than static ranges can provide.

4.4 Steady states

An observation we made of ATN models based our simulations is that they o�en reach

what could be described as steady states. A steady state, as we de�ne it, is a state in

which species biomasses remain constant, or are locked in a periodic oscillating pa�ern,

or some combination of the two, and this state continues inde�nitely. If a simulation

reaches a steady state, no further extinctions will occur.

�is is a useful concept for two main reasons. First, it eliminates unnecessary compu-

tation time. Continuing a simulation beyond the point at which a steady state is reached

provides no new information. With simulations only running until a steady state is

reached, we can set a much longer maximum duration for simulations. �is allows us

to gain more information about simulations with dynamics that take a long time to un-

fold, without wasting computation time on simulations that are generating redundant

information.

Second, it allows us to evaluate simulations knowing exactly how many extinctions

60

will occur given the model parameters. �e number of extinctions resulting from a given

set of parameters is a useful metric, because it quanti�es to what extent a simulated

ecosystem is “sustaining” (see Section 4.10.1). It provides us with a target variable to

optimize, as we do in Section 4.10.

4.4.1 Hypothesis

Our intial hypothesis about steady states is as follows: If run inde�nitely, the model will

eventually reach a steady state. �at steady state can be one of two types: (1) all species

are extinct or (2) some species have nonzero biomass which has reached a steady state.

Type (2) can be further divided into two possible states: (2a) consumers are extinct

and producers have reached carrying capacity or (2b) there are both producers and con-

sumers with nonzero biomass that can be con�rmed as a steady state. Based on ini-

tial observations, a graph of a simulation that has reached a steady state with nonzero

biomass can consist either of straight lines, or show a periodic oscillating pa�ern.

�us, in this hypothesis, there are three possible outcomes of a simulation in terms

of reaching a steady state. �e unambiguous, well-de�ned nature of these steady states

provides an a�ractive target variable for machine learning tasks.

Figure 4.9 demonstrates the initial observations supporting this hypothesis.

61

4.4.2 Testing for steady states

An important fact that helps verify that the model has reached a steady state is that the

model is memoryless. �e change in biomass at time t depends only on the biomass

at time t : Bt
′ = f (Bt), where Bt is the biomass state vector at time t , and Bt

′
is the

derivative the biomass state vector. �e change in biomass does not depend on what

happened before time t . Given a particular biomass state vector at time t , the output

that follows will always be the same, assuming the parameters of f are �xed.

�erefore, to test whether the model is in a steady state at time t , even if biomass is

not constant, we can search for a matching biomass vector in a previous timestep that

matches the vector at time t .

62

Figure 4.9: Observed steady states for a 4-species food web. �e vertical axis has a

logarithmic scale. 10
−12

is the extinction threshold. �e biomass curves change in shape

near the extinction threshold due the tolerances of the numerical integration underlying

the simulation.

63

4.5 Implementation of steady state detection

We implemented code in ATN Simulator to detect steady states in the model and stop

the simulation when a steady state is detected. �e steady states it can detect fall into

two categories:

1. Biomasses of all species are constant

2. Biomasses of one or more species are oscillating together in a periodic pa�ern,

while the biomasses of any other species are constant

4.5.1 Terminology

Simulating an ATN model consists of integrating a system of ordinary di�erential equa-

tions over time – that is, solving an initial value problem. In numerical integration, the

output at a point in time is called the state vector. With ATN model simulations, each

term in the state vector represents the biomass of a species in the food web. We call our

state vector the biomass state vector.

4.5.2 Constant-biomass steady states

Constant-biomass steady states include states in which all species have gone extinct, or

all consumers have gone extinct and producers have reached carrying capacity, or both

producers and consumers survive and have constant biomass. A constant steady state is

64

detected by continuously monitoring the derivatives of the model over the integration.

When all derivatives are very close to zero, a constant steady state is con�rmed and the

integration is stopped. “Very close to zero” means the following:

�����
B′i
Bi

�����
≤ 10

−10
(4.7)

where B′i is the derivative of the biomass of species i and Bi is the biomass of species

i .

4.5.3 Oscillating steady states

Detecting oscillating steady states is more complex. Oscillating steady states are detected

based on the observation that if the biomass state vector returns to any state it held

previously, then it will return to that state again and again in a periodic pa�ern. To

facilitate the comparison of the current state to a previous state, the simulator takes

snapshots of the state vector at exponentially spaced intervals. It then monitors the error

between the current state vector and the snapshot. When the current state matches the

snapshot within a certain tolerance, and at least one species has oscillating biomass, an

oscillating steady state is likely. To provide con�rmation before stopping the integration,

the snapshot must be matched three times.

�e current state is considered to match the snapshot when the relative error for all

species is within a 1% tolerance of the snapshot value. �at is,

65

�����
Bi − Bsi
Bsi

�����
≤ 0.01 (4.8)

for all species i , where Bi is the biomass of species i and Bsi is the biomass of species

i in the snapshot.

A species is identi�ed as having oscillating biomass if its biomass has had both pos-

itive and negative derivatives since the time of the snapshot.

Each snapshot interval is double the length of the previous one. �is is because the

duration of the period is not known in advance, and in order to detect a period, the

current interval must be at least as long as the period.

4.5.4 Implementation

We implemented two steady state detectors – one for constant steady states and one for

oscillating steady states – as two classes implementing the EventHandler interface in

the ODE package of the Apache Commons Math library.

An EventHandler de�nes a continuous function of the state vector and current time

that changes sign when some event of interest has occurred. �is is called a switching

function. For example, the switching function in the oscillating steady state detector

calculates the total error between the current biomass state vector and the snapshot

state vector. When this error changes sign – that is, crosses zero – a possible match

between the current state and the snapshot has occurred. �e integrator then calls a

method that returns a value indicating whether the integration should be stopped or

66

should continue. In the oscillating steady state detector, this method checks whether all

biomasses in the state vector match the snapshot within a tolerance.

4.5.5 �alitative evaluation

During the process of re�ning the steady state detection algorithms and tolerances, we

examined thousands of simulations for cases where a visually obvious steady state was

not detected (a false negative), or a steady state was incorrectly detected (a false positive).

�alitatively, the current implementation performs very well, though it sometimes errs

on the side of continuing simulations beyond the point at which a steady state is visually

apparent. �is is not a serious problem, and is much be�er than cu�ing simulations short

before they have reached a steady state.

Figures 4.10–4.12 show examples of simulations that were stopped when a steady

state was detected.

4.5.6 �antitative evaluation

Methods

To quantify the accuracy of the steady state detection, we performed an analysis in

which we estimated the number of occurrences of false detection of a steady state for

randomized simulations of several di�erent food webs. Based on this false positive (FP)

count and the true positive (TP) count among detected steady states, we calculated the

precision (TP/(TP + FP)) of the steady state detection for each food web.

67

To avoid in�ating our precision with easy true positives, we excluded detected steady

states resulting from complete extinction. Once all species have gone extinct, it is clear

that their biomass will remain at zero. We included only what we we call nonzero steady

states – steady states with surviving species – in our analysis.

We justify the use of precision as a metric as follows.

�e most important requirement with steady state detection is that it should make as

few type I errors, or false positives, as possible. In other words, falsely detecting steady

states is undesirable, because it means drawing incorrect conclusions about the stability

of a simulated ecosystem. On the other hand, a false negative, or type II error, implies a

lack of conclusive information about the simulation, which is not as much of a problem.

A high precision indicates that most detected steady states are true steady states. It

implies that the number of false positives is relatively small. For that reason, we focus

on precision here.

Another reason we focus on precision is that other metrics (such as recall) depend

on counting false negatives, which is not possible here without making unreasonable

assumptions. False negatives are simulations for which steady state detection failed but

which would eventually reach a steady state if run inde�nitely. Again, lacking ground-

truth labels, we cannot identify false negatives without employing our steady state de-

tection algorithm and assuming it works correctly – clearly not a reasonable assumption,

given that this algorithm is exactly what we are testing.

Lacking a set of ground-truth labels indicating true steady states, we used the fol-

68

lowing heuristic to distinguish between true positives and false positives. We continued

running each simulation for 100,000 time steps beyond the point at which a nonzero

steady state was detected. If any further extinctions occurred, we �agged the simula-

tion as a false positive (if the simulation had reached a true steady state, then no further

extinctions would have occurred). Otherwise, we �agged it as a true positive.

We analyzed three 5-species food webs and two 10-species food webs. We random-

ized the x and K parameters as well as initial biomass. We held other parameters �xed.

Results

Table 4.5 summarizes the results of the analysis. �e total of TP and FP varies, because

although we generated 1,000 simulations for each row of the table, only simulations with

a detected nonzero steady state are included. �e steady state detection has perfect or

near-perfect precision for all food webs below.

TP FP Precision

Food web

2-8-9-26-41 319 0 1.000

3-21-55-80-85 29 1 0.967

3-30-50-69-71 17 0 1.000

2-3-5-8-9-21-22-69-71-94 718 1 0.999

4-7-14-43-47-61-69-74-80-89 836 0 1.000

Table 4.5: Steady state detection evaluation results

69

Figure 4.10: A 10-species food web used in steady state detection evaluation

Figure 4.11: A detected constant steady state

Figure 4.12: A detected oscillating steady state

70

4.6 System-wide carrying capacity

In this section, we compare two di�erent ways of representing producer carrying ca-

pacity in ATN models: one in which producers have independent carrying capacity, and

another in which producers share a system-wide carrying capacity. �e simulations in

World of Balance and Convergence currently use the �rst type of model. However, the

second type is more richly descriptive. Our goal here is to explore the system-wide car-

rying capacity model as a potential alternative for World of Balance and Convergence.

For our other experiments, we continue to use the independent carrying capacity

model, because it is built in to the design of the Convergence game. However, we imple-

mented the system-wide carrying capacity model as an option in the simulation code.

For the independent carrying capacity model, we use the simple logistic growth func-

tion for producers de�ned by Williams et al. (2007) [3]:

Gi (B) = 1 −
Bi
Ki

(2.4 revisited)

where Bi is the biomass of producer species i and Ki is the environment’s carry-

ing capacity (maximum biomass) for species i . �is causes the growth of the producer

to slow down and stop as its biomass approaches carrying capacity. When Bi is very

small, Gi (B) is very close to 1, meaning that the growth of the producer is e�ectively

unconstrained by the carrying capacity. When Bi is equal to Ki , on the other hand, the

second term becomes 1, and so Gi (B) becomes 0: the producer’s growth stops because

71

its biomass has reached carrying capacity.

�is growth function assumes that the environment has a completely separate and

independent carrying capacity for each producer. �is is not true in reality; while various

species of plants do share areas of the environment without being in full competition

for it, there are shared limiting resources (such as nutrients, water, sunlight, and land

area). Researchers have proposed various alternative growth functions to account for

these factors [3, 6, 7, 14].

�e ATN models used by Boit et al. (2012) [6] and Kuparinen et al. (2016) [7] use

the following growth function to model a system-wide carrying capacity shared by all

producers:

Gi (B) = 1 −

∑
j∈producers cijBj

Ks
(2.5 revisited)

where Ks is the system-wide carrying capacity and cij is a competition coe�cient.

Boit et al. [6] �x cij at a value of 1 except for when i = j (in which case, it is set to 1.8

to model higher intra-guild competition). Kuparinen et al. [7] seem to use a �xed value

of 1 for cij in all cases. Accordingly, we �x cij at 1 for our experiments.

�e ATN Simulator so�ware simply sets Ks =
∑

i∈producers Ki when the system-wide

K option is selected. �is is for ease of parameterization and comparison of the two

growth functions.

72

4.6.1 Comparison of the two growth functions

�e two growth functions can produce very similar results, or very di�erent results, for

di�erent simulations. If the biomass of producers does not approach carrying capacity,

the choice of growth function has li�le e�ect. On the other hand, if producers do ap-

proach carrying capacity, the di�erences in the behavior of the two growth functions are

evident. With a system-wide carrying capacity, producers must compete, which results

in coupled dynamics between them.

Figure 4.13 shows a comparison between the simple growth function (plots on the

le�) and the system-wide K growth function (plots on the right) for several simulations

of a 5-species food web.

4.6.2 System-wide carrying capacity and steady state detection

Given the di�erences in simulation dynamics between the two growth models, we wanted

to assess whether there was any di�erence in the e�ectiveness of our steady state de-

tection algorithms between the two growth models. To do this, we repeated the steady

state detection evaluation described in Section 4.5.6 for the system-wide carrying capac-

ity model.

�e prior evaluation used three 5-species food webs with one producer each. In order

for the system-wide carrying capacity growth model to be meaningfully di�erent from

the individual carrying capacity model, we had to add a second producer to each of these

73

food webs. We used the same two 10-species food webs from the previous evaluation.

Table 4.6 shows the results of this evaluation. �e two growth models result in ef-

fectively the same precision from the steady state detection algorithms, which remains

near-perfect. Interestingly, the system-wide carrying capacity model results in fewer

detected nonzero steady states for all food webs, but this di�erence is not large.

TP FP Precision

Food web Growth fn

2-3-8-9-26-41 indiv. K 800 0 1.000

system K 739 1 0.999

2-3-21-55-80-85 indiv. K 747 1 0.999

system K 725 0 1.000

3-4-30-50-69-71 indiv. K 807 0 1.000

system K 737 2 0.997

2-3-5-8-9-21-22-69-71-94 indiv. K 718 1 0.999

system K 605 1 0.998

4-7-14-43-47-61-69-74-80-89 indiv. K 836 0 1.000

system K 830 0 1.000

Table 4.6: Steady state detection evaluation results with system-wide carrying capacity

74

Individual K System-wide K

Figure 4.13: Comparison of individual K and system-wide K

75

4.7 Functional response control parameter q

We use equation 2.6 (shown again below) to compute the functional response Fij of

predator species i with respect to prey species j.

Fij =
B

1+qi j
j∑

m∈prey αimB
1+qim
m + B

1+qi j
0ij

(2.6 revisited)

qij is a parameter that controls the shape of the functional response curve, allowing it

to vary from a Holling Type II functional response (q = 0) to a Holling Type III functional

response (q = 1) [3, 14]. We call it the functional response control parameter. Figure 4.14

shows how the behavior of the model changes as q is varied from 0 to 0.5 in increments

of 0.1 for all species in a 5-species food web.

Increasing q even slightly from 0 to 0.1 has a signi�cant stabilizing e�ect. �e func-

tional response equation models how predators consume more of prey species which

are more abundant, and less of those which are less abundant. When q > 0, this shi�

toward more abundant prey becomes more dramatic, because the dependence on prey

density becomes exponential instead of linear. As a result, �uctuations in biomass be-

come smaller, and less abundant prey are less likely to go extinct.

�e functional response control parameter is de�ned in at least two di�erent ways

in the literature. Williams et al. (2007) [3] de�ne the exponents in the functional re-

sponse equation to be 1 + q, as they are in our functional response equation. Other re-

searchers [6, 7, 14], de�ne the exponents as q by itself (or h for Hill exponent). However,

76

the descriptions of the parameter in these papers are all consistent with an exponent of

1 corresponding to a Type II functional response and an exponent of 2 corresponding to

a Type III functional response.

Boit et al. (2012) [6] and Kuparinen et al. (2016) [7] chose a value of 1.2 for the

parameter. According to Boit et al., this value “forms a relatively stable . . .Type II func-

tional response.” According to Kuparinen et al., the value creates a functional response

“intermediate between the Holling Type-II and Type-III functional responses.” Because

our exponents are 1 + q, this corresponds to a value of 0.2 for our q parameter.

77

Figure 4.14: E�ects of varying the q parameter

78

4.8 E�ect of q > 0 on steady states

A value of q greater than 0 causes all the terms in the functional response (equation 2.6)

to be nonlinear, because it makes their exponents greater than 1. �is can result in very

interesting, chaotic dynamics. Sometimes this chaos resolves into a detected constant

or periodic oscillating steady state, as shown in �gure 4.15.

Figure 4.15: Chaotic dynamics resolving to a steady state with q = 0.2

Other times, the chaotic dynamics continue seemingly inde�nitely, as shown in �g-

ure 4.16, and no steady state is detected.

Intuitively, there is an aspect of the dynamics in �gure 4.16 that seems stable. It

79

seems to represent some kind of steady state in that there are no apparent trends in

biomass. It also seems likely that no further extinctions will occur. However, the dy-

namics are clearly not constant and apparently not periodic. Situations similar to this

result from many di�erent parameter con�gurations with q = 0.2. We do not observe

these persistent chaotic dynamics when q = 0.

Is there a de�nable type of “chaotic steady state” that would describe these dynamics,

such that the state could be detected and the simulation could be halted with con�dence

that the state will not change? One possible de�nition would require average biomasses

between successive time segments at some time interval to remain constant. Addition-

ally, variance could be required to remain constant. However, the dynamics above do

not satisfy these requirements: even over segments of 10,000 time steps, both the mean

biomass and variance in biomass vary signi�cantly, as shown in �gure 4.17.

For the purpose of steady-state detection, we consider the term “chaotic steady state”

to be the oxymoron it sounds like, and categorize these kinds of results as inconclusive:

we cannot be sure how many further extinctions will occur. �is partly disproves the

hypothesis in section 4.4.1. �ere are situations in which the dynamics may not resolve

into a constant or periodic oscillating steady state. However, steady state detection is

still useful, because many simulations still do resolve into steady states with q > 0.

80

4.8.1 Steady state detection performance with q > 0

In Section 4.5.6, we presented an evaluation of the implemented steady state detection

algorithms. Up to that point in our analysis, we had been using a value of q = 0, and the

steady state detection algorithms and tolerances were tuned based on simulations using

this value. Table 4.7 repeats the evaluation for q = 0.2 and compares the performance

with q = 0. �e worst performance is on two of the 5-species food webs where q = 0.2.

Inspection of the simulation data reveals the likely cause: a lone species declining so

slowly to extinction that its derivative was within the steady state detection tolerance.

�is updated analysis reveals that further tuning of the steady state detection may be

required to improve performance with positive values of q.

TP FP Precision

Food web q

2-8-9-26-41 0.0 319 0 1.000

0.2 954 0 1.000

3-21-55-80-85 0.0 29 1 0.967

0.2 432 86 0.834

3-30-50-69-71 0.0 17 0 1.000

0.2 929 50 0.949

2-3-5-8-9-21-22-69-71-94 0.0 718 1 0.999

0.2 725 0 1.000

4-7-14-43-47-61-69-74-80-89 0.0 836 0 1.000

0.2 850 0 1.000

Table 4.7: Steady state detection evaluation results with di�erent q values

81

Figure 4.16: Persistent chaotic dynamics with q = 0.2. Inset shows zoomed-in view.

82

Mean biomass by time segment

Variance of biomass by time segment

Figure 4.17: Mean and variance of biomass aggregated over 10,000-timestep segments

for the persistent chaotic simulation shown in �gure 4.16. Segment 0 includes time steps

0–9,999, segment 1 includes time steps 10,000-19,999, and so on.

83

4.9 Generating sustaining simulations from steady states

We developed the following method to generate parameter values for simulations which

sustain all species in a (possibly oscillating) steady state.

First, we generated parameters values for a set of simulations by drawing them from

uniform random distributions. We ran each of these simulations until a steady state

was detected, or a maximum simulation duration (100,000 time steps) was reached. �e

so�ware recorded the type of steady state detected, if any, in each output �le.

�en, we ran an automated �ltering procedure on all of the simulation output �les. If

an oscillating steady state, or a constant biomass steady state including consumers, was

detected, the simulation was identi�ed as “sustaining.” For each sustaining simulation,

the procedure produced a set of parameter values for a new simulation equal to the

original simulation’s parameters, except with extinct species removed and the initial

biomass of each species set to the �nal biomass of that species in the original simulation.

Running simulations from these �ltered parameter values is guaranteed to produce

sustaining simulations, provided that a true steady state was detected. �is is because

a “steady state” here is de�ned as a biomass state vector to which the simulation will

always return. Essentially, the �ltering procedure removes simulations that do not reach

a detected steady state and removes the initial dynamics of those that do reach a steady

state, keeping only the steady state portion.

�is process helps validate the steady state detection algorithms. If a “sustaining”

84

simulation produced by the �ltering procedure results in extinctions, then a steady state

was falsely detected in the original simulation. (In fact, examination of the results re-

vealed a small number of false positives.)

Figure 4.19 shows some examples of �ltered sustaining simulations based on the food

web shown in �gure 4.18. Note that they include subsets of the species in the food web;

this is because species that went extinct in the original simulation are removed.

Figure 4.18: Food web from which the simulations in �gure 4.19 were generated

A disadvantage to this approach is that the desired set of species for the sustaining

simulation cannot be chosen in advance. �ere is no guarantee about which species will

persist and which will go extinct. However, it is still useful when one wants to generate

sustaining simulations where the exact set of persistent species is not important, such

as generating ecosystems for the Convergence game.

85

Figure 4.19: Examples of sustaining simulations generated from existing steady-state

simulations

86

4.9.1 Generating sustaining simulations for the Convergence game

We re�ned the �ltering procedure described above to generate simulations suitable for

use as target graphs in the Convergence games. As before, the �lter only passes simula-

tions that reached an oscillating steady state or a constant steady state with consumers.

Additionally, the �lter allows se�ing a threshold on the minimum number of species

(we call this parameter min-species), and tries to choose simulations that are likely to be

visually interpretable by the player.

In some simulations, the range of species biomass will be too large for visual inter-

pretation on the game’s linearly scaled y-axis. To illustrate the problem, if one species

has a peak biomass of 10,000, but another species has a peak biomass of 10, the sec-

ond species will be barely visible on the graph. �e vertical axis of the graph will have

been scaled to accommodate the larger biomass peak. To exclude such simulations, the

�lter analyzes the last several hundred time steps of the simulation, calculating the max-

imum biomass of each species as well as the overall maximum biomass. If the ratio of a

species’ maximum biomass to the overall maximum biomass is below a given threshold

(min-peak-ratio), the simulation is excluded. Both the number of time steps to analyze

and the threshold are con�gurable parameters.

Another desirable feature is visible variation in biomass. To �lter out constant biomass

simulations (or those that appear constant), the �lter calculates the range of biomass val-

ues for each species within the con�gured time step window. It then calculates the ratio

of each range to the overall maximum biomass. If this ratio is below a given threshold

87

(min-range-ratio), for all species, the simulation is excluded – that is, a simulation is

included only if at least one species’ biomass has a large enough range.

4.9.2 Results

To test this method of producing simulated ecosystems for Convergence, we generated

1,000 random simulations for each of four di�erent food webs. �ese input food webs

consisted of 5, 10, 12, and 15 species, respectively. We con�gured the �lter with a min-

peak-ratio of 0.05 a min-range-ratio of 0.05 and set min-species to 3. We con�gured the

�lter to analyze and keep 600 time steps of steady-state biomass data.

�e �lter accepted 198 of these 4,000 simulations, or approximately 5%. �e surviving

species among the these 198 simulations formed 14 distinct food webs ranging in size

from 3 to 9 species.

Visual inspection of the biomass data showed that the simulations passing the �lter

were good candidates for inclusion in the game. Figure 4.20 shows one example. Manual

curation would still be a useful step to ensure variety.

88

Figure 4.20: A simulated ecosystem selected by the Convergence steady-state �lter

4.10 Using decision trees to narrow the parameter search

space

One of the objectives when choosing parameter values for an ATN model is to produce

sustaining simulated ecosystems. �e large parameter space and complex behavior of

the model makes this a di�cult task. A brute-force search of the parameter space is

infeasible. In Section 4.3, we described a method of creating parameter range hints in

the Convergence game based on decision trees, thereby helping players to navigate the

parameter space. In this section, we use some similar methods. Here, however, we

incorporate the insights about steady states described in Sections 4.4, 4.5, 4.8, and 4.9.

�e approach in this section also di�ers from from the one described in section 4.9.

89

While both methods are for discovering parameters that lead to sustaining ecosystems,

the previously described approach does not allow specifying which species should be

included in the many di�erent resulting food webs. In this approach, a food web is

speci�ed, and we try to �nd the parameters that keep the most species alive in that

speci�c food web.

We propose a method of iteratively re�ning the search space by identifying promis-

ing regions of the parameter space and focusing the search within those regions. �is

method uses decision tree classi�ers to separate nonpromising regions from promising

regions.

4.10.1 De�ning “sustaining” simulated ecosystems

To clearly de�ne the objective of producing sustaining simulated ecosystems, we must

�rst de�ne what it means for a simulated ecosystem to be “sustaining.”

We de�ne “sustaining” in a simple way: if all species survive inde�nitely, no ma�er

how long the simulation runs, then the ecosystem is perfectly sustaining. It is also useful

to consider how close an ecosystem is to being a perfectly sustaining one, based on the

number of species surviving inde�nitely. �at is, we can consider an ecosystem with a

greater proportion of its species surviving inde�nitely to be “more sustaining” than an

ecosystem with a smaller proportion of its species surviving inde�nitely.

Based on this de�nition, a simulated ecosystem’s “sustainability” can be measured

as the inverse of the number of extinctions that occur before the simulation reaches a

90

steady state. A�er a steady state is reached, we know that no more extinctions can occur,

so any surviving species will continue to survive. An ecosystem with zero extinctions at

the time a steady state occurs is perfectly sustaining. Ecosystems with more extinctions

before the steady state occurs are less sustaining.

4.10.2 Simulations whose sustainability cannot be measured

Not all simulations reach a detected steady state. �is can happen for two reasons. First,

it is necessary to put an upper limit on the amount of time a simulation can run, and

sometimes this is not enough time for the model to reach a steady state. In some cases,

visual inspection of the simulated data strongly suggests that a steady state would even-

tually occur, but this intuition is not enough to draw conclusions. Second, the dynamics

can sometimes become seemingly chaotic, with no discernible pa�erns, as described in

section 4.8. �ese chaotic dynamics can continue for a very long time with no extinc-

tions occurring nor visibly inevitable. Again, however, it cannot be concluded that no

extinctions would occur if the simulation were to be run longer.

�e sustainability of a simulation that does not reach a detected steady state cannot

be measured by the de�nition above. More extinctions may or may not occur if the

simulation is run longer.

�ese inconclusive simulations arguably provide less information relevant to the

search for sustaining ecosystems, compared to simulations that do reach a steady state.

Fortunately, they are in the minority, so it is not too great a loss to exclude them from

91

the data driving the search process.

4.10.3 Problem de�nition

�e problem of parameterizing ATN models to result in sustaining ecosystems can be

de�ned as follows: For a given food web, maximize the number of species surviving

when the simulation reaches a steady state.

4.10.4 Proposed solution

General approach

�is proposed solution takes an approach of iteratively re�ning the parameter search

space. Each iteration, a set of simulations is generated using parameter values randomly

drawn from the currently most promising regions of the parameter space. A decision

tree is trained on the results, and then used to identify the most promising regions of the

parameter space for the next iteration. Over time, this guides the search toward regions

of the parameter space that result in more sustaining ecosystems.

�is approach uses a classi�cation model “backward” to produce more data similar to

the data it was trained on (or, more speci�cally, one class of data it was trained on). Prior

work has described methods of using decision trees [21] [22] and random forests [23]

to generate synthetic data that preserves the properties of an original dataset. Of these,

the approach in Eno & �ompson (2008) [21] seems most similar to the one described

here, though the details of the algorithm are not included.

92

Reiter (2005) [22] and Caiola & Reiter (2010) [23] speci�cally describe imputation of

�elds of existing U.S. Census data records for protecting privacy, rather than generating

entirely synthetic records.

In the description of this algorithm, the word “parameter” refers to an ATN model

parameter for an individual species, such as “parameter x for species 85,” rather than

simply “parameter x .”

Algorithm

�e algorithm implemented for the experiment is described as follows.

Algorithm 4 Decision tree-based parameter space search algorithm

Inputs:

• food-web, the food web whose parameter space is to be searched

• batch-size, the number of simulations in each training and test set

• seed-region, a broad region of the parameter subspace to be searched. �is region

de�nes the outer bounds of the search space.

Outputs for each iteration:

• Distribution of extinction counts, as relative frequencies

• regions, the most promising regions found in this iteration

• Values of intermediate variables and classi�er evaluation metrics

Let regions = seed-region.

Repeat the following steps until the desired distribution of extinction counts is reached:

93

1. Generate batch-size training simulations of food-web, where each simulation’s pa-

rameters are determined as follows:

(a) Randomly select a region from regions.

(b) Randomly generate the parameter values from independent uniform distri-

butions whose bounds are de�ned by region.

2. Discard simulations that did not reach a steady state.

3. Let extinction-count-threshold be the median number of extinctions among all re-

maining simulations.

4. Assemble a training set as follows:

(a) One row per simulation

(b) Features: All parameters in the subspace being searched

(c) Assign class labels:

• 0 if extinction-count ≥ extinction-count-threshold (“bad” simulations)

• 1 if extinction-count < extinction-count-threshold (“good” simulations)

(d) If class 1 contains no simulations, increase extinction-count-threshold by 1

and reassign class labels.

5. Train a decision tree classi�er using this training set.

6. Generate another batch-size simulations in the same way as the training set, again

discarding simulations that did not reach a steady state.

7. Assemble a test set in the same way the training set was assembled.

8. Evaluate the classi�er on the test set and report the results.

9. Combine the training and test sets.

10. Train a decision tree classi�er using the combined dataset.

11. Derive the promising regions of the parameter space from the decision tree using

the GetPromisingRegions procedure, and assign the results to regions for the

next iteration.

94

procedure GetPromisingRegions

Inputs:

• tree, a trained decision tree classi�er

• input-regions, the parameter space regions used to generate the training data for

the tree

Output:

• promising-regions, the promising regions derived from the tree

1. Identify promising-leaves, the set of leaves in the tree for which the majority class

label is 1 (“good”).

2. Compute root-bounds, the outermost bounds of input-regions, as follows:

• For each parameter p,

– set the lower bound for p to the smallest lower bound among all input-
regions, and

– set the upper bound for p to the largest upper bound among all input-
regions.

3. Compute node-regions, the regions of the parameter space de�ned by each node

in the decision tree, as follows:

(a) Set node-regionsroot to root-bounds.

(b) In a depth-�rst traversal, compute node-regionsle�-child and node-regionsright-child
as follows:

i. Base case: current-node is a leaf (return without further computation)

ii. Let p be the parameter on which current-node splits.

iii. Let threshold be the value of p on which current-node splits.

iv. Set node-regionsle�-child to node-regionscurrent-node.
v. Update the upper bound for p in node-regionsle�-child to the minimum of

its current value and threshold.

vi. Set node-regionsright-child to node-regionscurrent-node.

95

vii. Update the lower bound for p in node-regionsright-child to the maximum

of its current value and threshold.

4. Return promising-regions, the subset of node-regions corresponding to promising-
leaves.

Discussion of algorithm

�e critical idea underpinning the GetPromisingRegions procedure is that each node

in a decision tree is associated with a region of the feature space. An input sample can be

described as a point in the feature space. When a binary decision tree makes a prediction

for an input sample, that sample is routed down the tree, going le� or right depending on

the split criteria of the current node, until it reaches a leaf. �e region corresponding to

a node in the decision tree encompasses all possible input samples that would be routed

through that node. �e region corresponding to a leaf, then, encompasses all possible

samples that would be routed to that leaf.

4.10.5 Experiment

Hypothesis

�e hypothesis of this experiment is that the distribution of extinction counts among

the generated simulations will shi� closer to zero each iteration as the search process

proceeds. In other words, each iteration will result in a greater proportion of simulations

with fewer extinctions.

96

Setup

We used theDepthControlledRandomSuccessorSubgraph algorithm, sampling from

the World of Balance Serengeti food web, to sample three random food webs: a �ve-

species food web with one basal species, a ten-species food web with two basal species,

and a ��een-species food web with three basal species, shown in �gure 4.21.

Figure 4.21: �ree food webs used in the decision tree search experiment

We used ATN Simulator to run batches of 1000 simulations in which we only varied

x (metabolic rate), K (carrying capacity), and initial biomass. We �xed other parameters

at their default values. �e parameter ranges de�ning the initial region in which to start

the search were:

• x : 0..1

• K : 100..10,000

97

• initial biomass: 100..5,000

Since x only applies to animals and K only applies to plants, and initial biomass

applies to both, the parameter spaces for these three food webs include 10, 20, and 30

parameters, respectively. We used the decision tree classi�er from the scikit-learn
3

so�-

ware package [24]. �is implements a version of the CART (Classi�cation and Regres-

sion Trees) algorithm [25]. We con�gured the classi�er to use Gini impurity as the split

criterion. To reduce class bias, we con�gured the classi�er to balance the classes auto-

matically by weighting samples proportionally to class size. To reduce over��ing, we

constrained leaves to contain a minimum of 1% of the total sample size.

4.10.6 Results

We ran each of the three food webs for 10 search iterations and collected various met-

rics for each iteration. �ese metrics include the distribution of extinction counts, the

extinction-threshold used to separate the classes, the number of simulations in each class,

the F1 score on the test set, and the size of the decision tree.

Figure 4.22 shows the distributions of extinction counts for each of the 10 search

iterations. �e distributions show a general, if inconsistent, trend toward fewer extinc-

tions. �is shows that the search process is guiding the search toward more promising

regions of the parameter space with some degree of success. For the 5-species food web,

3
We switched from Weka to scikit-learn late in the project a�er learning that it met our needs be�er

than Weka. Scikit-learn, a Python library, provides be�er integration into our Python-based data pipeline

than does Weka, which is Java-based.

98

Figure 4.22: Distributions

of extinction counts by it-

eration of the decision tree

search experiment

99

the number of perfectly sustaining ecosystems increases from almost none to about 40%.

For the 10-species food web, the number of perfectly sustaining ecosystems remains near

zero, but the number of ecosystems with a large number of extinctions decreases dramat-

ically, and the number of ecosystems with only one extinction reaches about 50%. �e

results for the 15-species show the least consistent trend and include very few ecosys-

tems with fewer than 4 extinctions. However, the number of ecosystems with no more

than 4 extinctions out of 15 species exceeds 40%. Unfortunately, no perfectly sustaining

ecosystems are found for the 15-species food web.

Figure 4.23: Mean extinction count by iteration of the decision tree search experiment

Figure 4.23 simpli�es the picture, showing only the average extinction count by iter-

ation of the search process. For all three food webs, the mean extinction count shows a

clear decrease in the �rst 3-4 iterations. �e trend levels o� in subsequent iterations, and

100

it does not appear that continuing the process beyond 10 iterations would yield much

improvement with the current algorithm. By iteration 3, the 15-species food web has

reached its lowest mean extinction count. However, as shown in �gure 4.22, it does gain

some ecosystems with only three extinctions in iteration 4.

�e classi�cation performance of the decision trees is one factor in the overall per-

formance of the search process. We evaluate the performance of the decision tree in

each iteration by generating a test set of simulations. We calculate the F1 score for both

classes, and average the two F1 scores. To give performance both classes equal weight,

we use an unweighted average. Figure 4.24 shows this average score by iteration for

each food web.

Figure 4.24: Average F1 score by iteration of the decision tree search experiment

�e performance of the decision trees is good in the �rst iteration, when they are

101

trained on simulations encompassing broad, contiguous regions of the parameter space.

However, it drops signi�cantly in subsequent iterations. In part, the F1 scores are lim-

ited by the minimum leaf weight of the decision tree. �is minimum is set to combat

over��ing, but tends to produce a tree that does not perfectly �t the training data, which

inherently limits its performance on the test data.

�e complexity of the decision trees, measured as the number of nodes (�gure 4.25),

does not have a trend that is consistent among the three food webs.

Figure 4.25: Average tree size by iteration of the decision tree search experiment

�e very small tree in iteration 3 for the 15-species food web occurs when the classes

become extremely skewed, with only 5 instances of the “good” class in the training and

test sets combined. A similar situation of class imbalance occurs in iteration 9 for the 10-

species food web. �is suggests a need for additional measures to keep classes balanced.

102

Figure 4.26 shows the tree from iteration 3 of the 5-species food web, which is typical

in size. Blue nodes have a “good” class majority, while orange nodes have a “bad” class

majority. Blue leaves represent the promising regions of the parameter space.

4.10.7 Conclusions

�e results are mostly consistent with the hypothesis that the distribution of extinction

counts would shi� closer toward zero each iteration. However, the improvements begin

to level o� a�er a small number of iterations, and do not reach a place where most

ecosystems are sustaining.

�ere are some areas of the process that could be improved to achieve be�er perfor-

mance.

Class balance could be improved, as it seems that weighting the classes during the

training process does not adequately correct for instances of extreme class imbalance.

�ere simply is not enough data in the minority class. Because more data can always be

generated, undersampling the majority class is tempting, but when the minority class

is tiny, this would require generating and discarding large numbers of time-consuming

simulations.

Classi�cation accuracy could be improved by generating additional training data in

each iteration, until performance on the test set reaches a minimum threshold.

Computational performance is a clear area for improvement. Running the simula-

tions takes the vast majority of the computation time. For this experiment, the entire

103

F
i
g
u

r
e

4
.2

6
:

E
x
a
m

p
l
e

d
e
c
i
s
i
o

n
t
r
e
e

f
r
o

m
d

e
c
i
s
i
o

n
t
r
e
e

s
e
a
r
c
h

e
x
p

e
r
i
m

e
n

t

104

10-iteration process with 20,000 simulations per food web took 1 hour for the 5-species

food web, 7.5 hours for the 10-species food web, and nearly 19 hours for the 15-species

food web. We ran the so�ware on an Amazon Web Services c3.large instance (a dual-

core Intel Xeon E5-2680 v2 processor at 2.80GHz). �e largest reductions in computation

time could be achieved by reducing the number of simulations required. Optimization

of the simulation code in ATN Simulator would clearly also improve the situation.

Despite leaving room for improvement, this experiment is a proof of concept of the

general approach of using a machine learning model to iteratively re�ne the parameter

search space. With further work, a more sophisticated algorithm, and perhaps more so-

phisticated classi�cation models than decision trees, we believe this could be a successful

approach.

4.11 Using the decision tree search to generate Convergence

simulations

One potential application of the decision-tree-based parameter space search described

in Section 4.10 is generating sustaining simulation data for the Convergence game. In

Section 4.9.1, we described an approach to generating these Convergence simulations

by running many random simulations to a steady state, removing the pre-steady-state

portions, and �ltering the resulting simulations for visual suitability. To generate the

random simulations, parameter values are drawn from broad uniform distributions.

105

Here, we evaluate the results of replacing these broad uniform distributions with the

promising regions discovered by the decision tree search process. In other words, we

evaluate using the output of the decision tree search process as input to the Conver-

gence simulation �ltering process. We wish to see if this can yield improved results over

using the Convergence �ltering process alone, in terms of the number of Convergence

simulations produced or the size of food webs in these simulations.

For our control simulations, we followed the procedure described in Section 4.9.1

using the three food webs described in Section 4.10.

For our test simulations, instead of using the broad uniform distributions, we drew

parameter values from the promising regions from the �nal iteration of the evaluation

in Section 4.10.

We generated 1,000 simulations for each of the three food webs and two groups.

4.11.1 Results

Table 4.8 compares the results for the control and test groups of simulations. �e table

shows the number of simulations at two di�erent stages in the �ltering process. Sustain-

ing sims counts the number of steady-state simulations including consumers.
4 Conver-

gence sims counts the number of Sustaining sims that were accepted by the Convergence

�lter. In all cases, the Convergence �lter removes a signi�cant portion of the candidate

4
Note that this number is greater than 1,000 for the 15-species control group. �is is because the �rst

stage of the �lter identi�es food webs that have become disconnected due to extinctions and separates

them into independent simulations, thereby potentially increasing the total number of simulations.

106

steady-state simulations. �e proportion varies by food web, and is neither consistently

larger nor smaller for the test group.

Control Test

Input food web

5 species Sustaining sims 946 854

Convergence sims 180 353

Output food webs 3 3

Avg. food web size 3.31 4.30

10 species Sustaining sims 829 689

Convergence sims 23 0

Output food webs 2 0

Avg. food web size 3.87 -

15 species Sustaining sims 1611 568

Convergence sims 28 6

Output food webs 2 2

Avg. food web size 3.14 6.33

Table 4.8: Results of applying decision tree search regions to Convergence simulation

�lter. Sustaining sims is the number of simulations including both producers and con-

sumers in a steady state a�er separating disconnected food webs into separate simula-

tions. Convergence sims is the number of these simulations that were accepted by the

Convergence �lter for visual suitability for the game. Output food webs is the number

of distinct food webs among the accepted simulations. Avg. food web size is the average

size of the food webs included in the output, weighted by the number of simulations for

each food web.

For the 5- and 10-species food webs, using the promising regions from the decision

tree search as input to the Convergence �lter results in simulations including more sur-

viving species, on average (see Avg. food web size in the table). �is shows a potential

107

bene�t to connecting the two processes in this way.

For the 10-species food web, no simulations in the test group passed the Convergence

�lter, despite the fact that many sustaining simulations were extracted from the input

dataset. Examination of individual simulation data reveals that the sustaining simula-

tions are rejected by the Convergence �lter for one of two reasons. First, many of them

have constant biomass, so the min-range-ratio of 0.05 excludes them. Second, many of

them include one or two species that persist with very low biomass compared to the

other species, resulting in exclusion due to the min-peak-ratio of 0.05.

4.11.2 Conclusions

Our experiment shows mixed results from this method of combining the decision tree

parameter search with the Convergence �ltering process. For the 5-species food web, we

see improvements in the both the number of Convergence simulations and the average

food web size. For the 15-species food web, we obtain much larger food webs on average,

but also far fewer simulations. For the 10-species food web, combining the processes in

this way gains us nothing: no Convergence simulations are produced due to the way

the decision tree parameter search produces simulations with either constant biomass

or species that persist with very low biomass – too low to be usable in the game.

It bears mentioning that the Convergence �ltering process is designed for a linear-

scale y axis. Many of the sustaining simulations in the 10-species test group are visually

interpretable with a log-scale y axis. If Convergence used a log scale rather than a linear

108

scale for the y axis, simulations in which some species persisted at very low biomass

could be included.

One way in which the decision tree search might be adapted to producing Conver-

gence ecosystems would be to classify “good” vs. “bad” simulations based not only on

the number of extinctions, but also incorporating the same visual suitability criteria used

by the Convergence �lter.

109

Chapter 5

Conclusions and Future Work

Allometric trophic network (ATN) models provide useful ways of examining ecologi-

cal phenomena. However, they are di�cult to parameterize to accurately represent real

ecosystems, due to the the models’ internal interdependencies, complex dynamics, and

many parameters. We have sought ways of parameterizing ATN models to produce self-

sustaining simulated ecosystems using machine learning-based approaches and gami�-

cation within the framework of the World of Balance game.

�e motivation of this work is to improve our understanding of ATN models and

their parameters so that they can be used more e�ectively in the study of ecosystems.

We also wish to help educate people through the World of Balance game, inspiring and

encouraging game players to learn about ecology.

Our contributions include a graph sampling algorithm for food webs, a performant

and reusable so�ware package for ATN simulation, an algorithm for detecting steady

states in ATN simulations, an improved environment score for World of Balance, en-

110

hancements to the Convergence game, and a machine-learning-based method for ATN

model optimization.

5.1 Future work

�e concept and implementation of parameter range hints for Convergence game should

be evaluated and improved by conducting a user study. �is study could compare the

performance of players who receive the hints with a control group who do not receive

the hints. Two suggested areas for improvement of the hints are the ability to show

multiple, discontiguous ranges, and some representation of parameter interdependence.

�e second point refers to the fact that multiple, separate regions of the parameter space

may lead to a reasonable solution, and in such a situation, optimal parameter ranges are

not independent. �is may require an more dynamic representation of the hints that

responds to user input.

�e precision of the steady state detection algorithm could be improved for values

of q > 0, as described in Section 4.5.6. A more rigorous evaluation incorporating more

food webs and parameter variations would help with this improvement.

�ere is much room for improvement in the parameter space search method de-

scribed in section 4.10. Issues of class balance should be addressed. �is may require

determining another basis on which to assign classes other than a threshold on the num-

ber of extinctions, which may be too coarse a measure. Classi�cation accuracy could be

improved. Computational performance could be improved by �nding ways of running

111

fewer simulations, running shorter simulations, or optimizing the simulation code.

Simulations sometimes exhibit persistent chaotic dynamics. �is is an interesting

phenomenon that warrants further study. It would be useful if it could be determined

whether all species in a chaotic system will survive.

�e system-wide carrying capacity model described in Section 4.6 is more richly de-

scriptive than the growth model currently used in World of Balance and Convergence.

It is worth considering switching to this model, which is already implemented in the

core simulation code. �is would require changing the controllable parameters in Con-

vergence, which currently uses K as a parameter for each producer. For example, the

growth rate r could be substituted for K , and a separate slider could be added for the

system carrying capacity Ks .

Resiliency is an important factor in ecological sustainability. For each individual sim-

ulation included in our analyses, the model parameters were �xed for its entire duration,

and no new species or biomass were introduced into the system. By introducing param-

eter and biomass changes into simulations that have stabilized, some of the machine

learning experiments here could be extended to predict resiliency following a similar

approach to that of Berlow et al. (2009) [14].

�e applications of machine learning we have described have been based on data

structured a particular way. �e datasets are at the simulation level – that is, each data

point corresponds to a simulation. �e features consist solely of ATN model parameters

and the initial biomass of each species. Most importantly, each machine learning model

112

is trained on data generated from a single food web, which means that it cannot make

predictions about other food webs. �us, generalizability across di�erent food webs is

limited. An approach that allows machine learning models to make predictions about

arbitrary food webs would be useful. �is would entail extracting features about food

web structure. Williams & Martinez (2000) [26] de�ne 13 such structural properties, and

these would be excellent candidates for features. It would also require encoding ATN

model parameters as features in a way that is uniform across food webs.

113

Bibliography

[1] P. Yodzis and S. Innes, “Body size and consumer-resource dynamics,” American Nat-
uralist, pp. 1151–1175, 1992.

[2] R. J. Williams and N. D. Martinez, “Stabilization of chaotic and non-permanent

food-web dynamics,” �e European Physical Journal B-Condensed Ma�er and Com-
plex Systems, vol. 38, no. 2, pp. 297–303, 2004.

[3] R. J. Williams, U. Brose, and N. D. Martinez, “Homage to yodzis and innes 1992:

scaling up feeding-based population dynamics to complex ecological networks,”

in From energetics to ecosystems: the dynamics and structure of ecological systems,
pp. 37–51, Springer, 2007.

[4] J. E. Cohen, F. Briand, and C. M. Newman, “Community food webs: data and the-

ory,” Biomathematics, vol. 20, 1990.

[5] I. Yoon, G. Ng, H. Rodrigues, T. Nguyen, J. H. Paik, S. Yoon, R. Williams, and N. D.

Martinez, “Iterative design and development of the ‘World of Balance’ game: from

ecosystem education to scienti�c discovery,” inGames Innovation Conference (IGIC),
2013 IEEE International, pp. 283–290, IEEE, 2013.

[6] A. Boit, N. D. Martinez, R. J. Williams, and U. Gaedke, “Mechanistic theory and

modelling of complex food-web dynamics in lake constance,” Ecology le�ers, vol. 15,

no. 6, pp. 594–602, 2012.

[7] A. Kuparinen, A. Boit, F. S. Valdovinos, H. Lassaux, and N. D. Martinez, “Fishing-

induced life-history changes degrade and destabilize harvested ecosystems,” Scien-
ti�c reports, vol. 6, p. 22245, 2016.

114

[8] S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay,

D. Baker, Z. Popović, et al., “Predicting protein structures with a multiplayer online

game,” Nature, vol. 466, no. 7307, pp. 756–760, 2010.

[9] F. Khatib, F. DiMaio, S. Cooper, M. Kazmierczyk, M. Gilski, S. Krzywda, H. Zabran-

ska, I. Pichova, J. �ompson, Z. Popović, et al., “Crystal structure of a monomeric

retroviral protease solved by protein folding game players,” Nature structural &
molecular biology, vol. 18, no. 10, pp. 1175–1177, 2011.

[10] E. B. Baskerville, A. P. Dobson, T. Bedford, S. Allesina, T. M. Anderson, and M. Pas-

cual, “Spatial guilds in the serengeti food web revealed by a bayesian group model,”

PLoS Comput Biol, vol. 7, no. 12, p. e1002321, 2011.

[11] N. Mu�il and K.-W. Chau, “Machine-learning paradigms for selecting ecologi-

cally signi�cant input variables,” Engineering Applications of Arti�cial Intelligence,
vol. 20, no. 6, pp. 735–744, 2007.

[12] Y. Shan, D. Paull, and R. McKay, “Machine learning of poorly predictable ecological

data,” Ecological modelling, vol. 195, no. 1, pp. 129–138, 2006.

[13] R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, and J. P.

Sethna, “Universally sloppy parameter sensitivities in systems biology models,”

PLoS Comput Biol, vol. 3, no. 10, p. e189, 2007.

[14] E. L. Berlow, J. A. Dunne, N. D. Martinez, P. B. Stark, R. J. Williams, and U. Brose,

“Simple prediction of interaction strengths in complex food webs,” Proceedings of
the National Academy of Sciences, vol. 106, no. 1, pp. 187–191, 2009.

[15] J. Co�er, “Predicting e�ects of modifying species’ parameters in an allometric

trophic network model,” Master’s thesis, San Francisco State University, 2015.

[16] J. E. Cohen, Food webs and niche space. No. 11, Princeton University Press, 1978.

[17] B. Kendall, “�e macroecology of population dynamics: taxonomic and biogeo-

graphic pa�erns of population cycles,” Ecol Le�, vol. 1, pp. 160–164, 1998.

[18] C. E. Shannon, “A mathematical theory of communication,” �e Bell System Tech-
nical Journal, vol. 27, pp. 379–423, July 1948.

115

[19] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wi�en,

“�e weka data mining so�ware: an update,” ACM SIGKDD explorations newsle�er,
vol. 11, no. 1, pp. 10–18, 2009.

[20] J. R. �inlan, C4. 5: programs for machine learning. Elsevier, 2014.

[21] J. Eno and C. W. �ompson, “Generating synthetic data to match data mining pat-

terns,” IEEE Internet Computing, vol. 12, no. 3, 2008.

[22] J. P. Reiter, “Using cart to generate partially synthetic public use microdata,” Journal
of O�cial Statistics, vol. 21, no. 3, p. 441, 2005.

[23] G. Caiola and J. P. Reiter, “Random forests for generating partially synthetic, cate-

gorical data.,” Trans. Data Privacy, vol. 3, no. 1, pp. 27–42, 2010.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. �irion, O. Grisel, M. Blon-

del, P. Pre�enhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-

peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in

Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[25] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classi�cation and regression
trees. CRC press, 1984.

[26] R. J. Williams and N. D. Martinez, “Simple rules yield complex food webs,” Nature,
vol. 404, no. 6774, pp. 180–183, 2000.

	Introduction
	Contributions

	Background
	Allometric trophic network models
	Gamification and World of Balance

	Literature Review
	Experimental Methods, Implementation, and Analysis
	Graph sampling for food webs
	Food webs as graphs
	Graph sampling and ``subwebs''
	Random connected induced subgraphs
	Random successor subgraphs
	Depth-controlled random subgraphs
	Results

	Measuring the health of simulated ecosystems
	Oscillating patterns in biomass
	The original World of Balance Environment Score
	Revised Environment Score
	Comparison of environment score formulas

	Identifying parameter range hints for the Convergence game
	Species selection
	Parameter space exploration and simulation
	Machine-learning classification of simulation results
	Derivation of parameter ranges to display as game hints
	Evaluation

	Steady states
	Hypothesis
	Testing for steady states

	Implementation of steady state detection
	Terminology
	Constant-biomass steady states
	Oscillating steady states
	Implementation
	Qualitative evaluation
	Quantitative evaluation

	System-wide carrying capacity
	Comparison of the two growth functions
	System-wide carrying capacity and steady state detection

	Functional response control parameter q
	Effect of q > 0 on steady states
	Steady state detection performance with q > 0

	Generating sustaining simulations from steady states
	Generating sustaining simulations for the Convergence game
	Results

	Using decision trees to narrow the parameter search space
	Defining ``sustaining'' simulated ecosystems
	Simulations whose sustainability cannot be measured
	Problem definition
	Proposed solution
	Experiment
	Results
	Conclusions

	Using the decision tree search to generate Convergence simulations
	Results
	Conclusions

	Conclusions and Future Work
	Future work

	Bibliography

