
CSc 631 Network
Issues for MultiPlayer

Game Design

Networked Games: Doom

• id Software, 1993
• First-person shooter (FPS) for

PCs
• Part of the game was released as

shareware in 1993
• extremely popular
• created a gamut of variants
• Flooded LANs with packets at

frame rate

Networking

• Data transfer
– latency
– bandwidth
– reliability
– protocol

• Internet protocols
– TCP, UDP
– unicast, broadcast, multicast

• Communication architectures
– peer-to-peer
– client-server

Server and Client

host:port

host:port

host:port

Clients make “calls”

to that port #

Server listens

on a port #

host:port

Server and client can be
the same machine!

Client Process Server Process

Socket Programming

TCP
• Connection-Oriented

– Port on “client” connects to port on
“server”

• Reliable
– 3-way handshake

• Byte-Stream
– To application, looks like stream of

bytes flowing between two hosts

• Flow Control
– Prevents overrunning receiver /

network capacity

User Datagram Protocol
(UDP)

• Characteristics
– Connectionless, Datagram,

Unreliable

• Good for Streaming Media, Real-
time Multiplayer Networked
Games, VoIP

Design of a Game Room
Server/Client

Clients call

Server listens

Game Server Design 1

• Server State
– Updated whenever a client connects

– Who is connected

– Send out accumulated updates from
each client to every connecting client

• Server Abilities
– Accept a New Connection

– Close a Connection

– Receive an action from a client

– Send the actions to all connected clients

Game Server Design 1

• Client State
– Updated asynchronously when a
client connects to server

– Who is connected

– Send out accumulated updates from
each client to every connecting client

• Client Abilities
– Receive a list of actions of other

players from a server

– Update the player’s states in their
own client copy

ServerSocket ding = null;
Socket dong = null;
try {
// ServerSocket, Socket are availalbe Java classes.

ding = new ServerSocket(hcf.getListenPort());
System.out.println("Opened socket " + hcf.getListenPort());

while (true) { // keeps listening for new clients, one at a time
try {
dong = ding.accept(); // waits for client here
}
catch (IOException e) {
System.out.println("Error opening socket");
System.exit(1);
}
try {

// Connection is built, so read stream from the socket
// and parse request

ReadHMsg(dong);
} catch (Exception e){
System.out.println("Error writing output"); }

JAVA SERVER - singlethreaded

JAVA Example for Server

Web Server - multithreaded
• A server class starts max number

threads of request_handler that
extends Thread class.

for(i=0; i<maxthreads;i++){
request_handler server_thread = new

request_handler(ss,i,hc,mc,l);
server_thread.start();

}

hconfig = new httpd_config("httpd.conf");
if(!hconfig.isValid()){
System.out.println("Configuration file not correct");
return;}

mime = new mime_config(hconfig.getValue("TypesConfig"));
mime.setDefault(hconfig.getValue("DefaultType"));

s = new server(hconfig,mime);
if(s.isReady()){

s.run();
}

Server.run

private synchronized Socket get_socket(){
try{

Socket incoming = ss.accept();
return(incoming);

}
catch(IOException e){

System.out.println(e);
}
return(null);

}

Request_handler.get_socket

Web Server – multithread example II

• A main server class waits for connections
and creates new thread when a new
request arrives.

• The ServerHandler extends thread class.

while(true)
{

Socket socket = sSocket.accept();
new ServerHandler(socket, numThreadsCreated,

srmProp).start();
}

BufferedReader in = new BufferedReader(
new InputStreamReader(

socket.getInputStream()));
request.readRequest(in);
response = new
HResponse(request,socket.getOutputStream());
socket.close();

ServerHandler.run

private synchronized Socket get_socket(){
try{

Socket incoming = ss.accept();
return(incoming);

}
catch(IOException e){

System.out.println(e);
}
return(null);

}

Request_handler.get_socket

Extend web server to game server

• A main server class waits for connections
and creates new thread when a new
request arrives.

• The server maintains connections from
clients and maintain status of all the
connected clients.

• Each client updates server about 10 times
per sec.

• Server updates the status and returns the
status of connected clients who are in the
same room.

• Clients updates status of other connected
players on their side.

“Endianness”

In computing, endianness is the byte (and sometimes bit) ordering used to represent some kind of data. Typical cases are the

order in which integer values are stored as bytes in computer memory (relative to a given memory addressing scheme) and the

transmission order over a network or other medium. When specifically talking about bytes, endianness is also referred to simply as

byte order. [1] The usual contrast is between most significant byte (or bit) first, called big-endian, and least significant byte (or bit)

first, called little-endian.

Game client: Panda3D – Little-endian

Game server: Java – Big-endian

Encoding

All data packages sending between client and server are in the format of “pydatagram” which is heavily used in the client-side

programming. The protocol between client and server should strictly follow this format when sending data packages on the wire.

Generic Package Format:

[Total length of package] [Data1 encoded] [Data2 encoded]…

----->2 bytes Short<------

(fixed)

Nurse Game C/S Generic Package Format:

[Total length of package] [Request or response ID] [Data1 encoded] [Data2 encoded]…

----->2 bytes Short<------ ----->2 bytes Short<------

(fixed) (fixed)

Our Game Protocol

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Address_space

Type and usage Format

RequestLogin

Client requests to login with a username and password.

The server validates this and responds with ResponseAuth

Short Constants.CMSG_AUTH

String Username

String Password

RequestHeartbeat

Client's state has not changed, but enough time has passed that the client

would like an update from the server. Each client now is a thread and

associated with a specific username, when request comes, server knows

which client is sending the heartbeat, so no user id is required. The server

will be able to check the client’s queued response and send all of them out to

the client socket.

Short Constants.REQ_HEARTBEAT

String Greeting

RequestLogout

Client wishes to log out from the game. No more requests are to be sent

after this.

The server will respond with ResponseDisconnected, and server will update

other users with ResponseRemoveUser.

Short Constants.CMSG_DISCONNECT_REQ

String message

RequestMove

Client issues a change to their location, and isMoving flag.

This is used when a client wishes to move or stop moving. It is followed by

creating a number of ResponseMove and Server will update other users with

these ResponseMove

Short Constants.CMSG_MOVE

Float x //location vector

Float y

Float z

Float h //facing direction

boolean isMoving

RequestChatPrivate

Client sends chat message to a single player. Message type can be used with

a buddy list.

The private chat message will be delivered only if the “to” user is online at

the time the update reaches them.

Short Constants.CMSG_PRIVATE_CHAT

String receiverName

String message

RequestChatGlobal

Client sends chat message to everyone currently online.

Short Constants.REQ_CHAT_GLOBAL String message

RequestChatTeam

Client sends chat message to every member of their team currently online.

int Constants.REQ_CHAT_TEAM

long userId

String message

Requests (client to server in Pydatagram format)

Some changes made to conform to the Python and Java communication

Implemented – Necessary functions

To be implemented – Need less client side support, doable

Type and usage Format

ResponseAuth

Affirmative response to RequestLogin.

It is followed by creating a number of

ResponseCreate. All ResponseCreate will be

queued up into all OTHER users’ update queue.

Short Constants.SMSG_AUTH_RESPONSE

Int flag (1 valid 2 invalid)

String greeting

ResponseCreate

Create one character in client game world represent

one existing user who already logs in.

The new character in the world will be associated

with username.

Short Constants.SMSG_CREATE

String createCharacterName

String greeting

ResponseLogout

Client sends out request to disconnect. Server

replies and removes user from current list also

inform other clients to remove the user.

Followed by creating a number of

ResponseRemoveUser. All ResponseRemoveUser

will be queued up into all OTHER users’ update

queue.

Short

Constants.SMSG_DISCONNECT_ACK

ResponseRemoveUser

One client disconnects. Server informs other clients

to remove the user in their game worlds.

Short Constants.SMSG_REMOVE_USER

String removeCharacterName

String message

Responses (server to client in Pydatagram format)

Some changes made to conform to the Python and Java communication

Implemented – Necessary functions

To be implemented – Need less client side support, doable

