
GPU

Slide Credits

• Marc Olano (UMBC)
• SIGGRAPH 2006 Course notes

• David Luebke (University of Virginia)
• SIGGRAPH 2005, 2007 Course notes

• Mark Kilgard (NVIDIA Corporation)
• SIGGRAPH 2006 Course notes

• Rudolph Balaz and Sam Glassenberg (Microsoft Corporation)
• PDC 05

• Randy Fernando and Cyril Zeller (NVIDIA Corporation)
• I3D 2005

What Does GPU do?

• Let’s try to understand Where the GPU was born from...
• Graphics Card / Video Card

• What does Graphics card do and Why did people develop it?
• You need to understand Graphics (Rendering) Pipeline

Can you see the relation?

Power of Homogeneous Coordinate System

• So, where is the most computation intensive part?

• What did graphics card do about it?

• How was GPU evolved from Graphics Card?

15

16

Interpolation

Image courtesy of Watt & Watt, Advanced Animation and Rendering Techniques

GPU Fundamentals: Graphics Pipeline

• A simplified graphics pipeline
• Note that pipe widths vary

• Many caches, FIFOs, and so on not shown

GPUCPU

Application
Transform

& Light
Rasterize Shade Video

Memory

(Textures)

X
fo

rm
e
d
, L

it V
e
rtic

e
s (2

D
)

Graphics State

Render-to-texture

Assemble

Primitives

V
e
rtic

e
s (3

D
)

S
c
re

e
n
sp

a
c
e
 tria

n
g
le

s (2
D

)

F
ra

g
m

e
n
ts (p

re
-p

ix
e
ls)

F
in

a
l P

ix
e
ls (C

o
lo

r, D
e
p
th

)

GPU

Transform

& Light

CPU

Application Rasterize Shade Video

Memory

(Textures)

X
fo

rm
e
d
, L

it V
e
rtic

e
s (2

D
)

Graphics State

Render-to-texture

Assemble

Primitives

V
e
rtic

e
s (3

D
)

S
c
re

e
n
sp

a
c
e
 tria

n
g
le

s (2
D

)

F
ra

g
m

e
n
ts (p

re
-p

ix
e
ls)

F
in

a
l P

ix
e
ls (C

o
lo

r, D
e
p
th

)

GPU Fundamentals: Modern Graphics Pipeline

• Programmable vertex
processor!

• Programmable pixel
processor!

Fragment

Processor

Vertex

Processor

GPUCPU

Application
Vertex

Processor
Rasterize

Fragment

Processor
Video

Memory

(Textures)

X
fo

rm
e
d
, L

it V
e
rtic

e
s (2

D
)

Graphics State

Render-to-texture

V
e
rtic

e
s (3

D
)

S
c
re

e
n
sp

a
c
e
 tria

n
g
le

s (2
D

)

F
ra

g
m

e
n
ts (p

re
-p

ix
e
ls)

F
in

a
l P

ix
e
ls (C

o
lo

r, D
e
p
th

)

GPU Fundamentals: Modern Graphics Pipeline

Assemble

Primitives

Geometry

Processor

 Programmable
primitive assembly!

 More flexible
memory access!

GPU vs CPU

• A GPU is tailored for highly parallel operation while a CPU executes programs
serially

• For this reason, GPUs have many parallel execution units and higher transistor
counts, while CPUs have few execution units and higher clockspeeds

• A GPU is for the most part deterministic in its operation (though this is quickly
changing)

• GPUs have much deeper pipelines (several thousand stages vs 10-20 for CPUs)

• GPUs have significantly faster and more advanced memory interfaces as they
need to shift around a lot more data than CPUs

The GPU pipeline

• The GPU receives geometry information from the CPU as an input and
provides a picture as an output

• Let’s see how that happens

host

interface

vertex

processing

triangle

setup

pixel

processing

memory

interface

Host Interface

• The host interface is the communication bridge between the CPU and the GPU

• It receives commands from the CPU and also pulls geometry information from
system memory

• It outputs a stream of vertices in object space with all their associated
information (normals, texture coordinates, per vertex color etc)

host

interface

vertex

processing

triangle

setup

pixel

processing

memory

interface

Vertex Processing

• The vertex processing stage receives vertices from the host interface in object
space and outputs them in screen space

• This may be a simple linear transformation, or a complex operation involving
morphing effects

• Normals, texcoords etc are also transformed

• No new vertices are created in this stage, and no vertices are discarded
(input/output has 1:1 mapping)

host

interface

vertex

processing

triangle

setup

pixel

processing

memory

interface

GPU Pipeline: Transform

• Vertex processor (multiple in parallel)
• Transform from “world space” to “image space”

• Compute per-vertex lighting

Example

• Vertex shader
void main()
{

vec4 v = vec4(gl_Vertex);
v.z = 0.0;
gl_Position = gl_ProjectionMatrix * gl_ModelViewMatrix * gl_Vertex;

}

• Pixel shader
void main()
{

gl_FragColor = vec4(0.8,0.4,0.4,1.0);
}

http://www.lighthouse3d.com/opengl/glsl/

Vertex Shader

• One element in / one out
• No communication
• Can select fragment address
• Input:

• Vertex data (position, normal, color, …)
• Shader constants, Texture data

• Output:
• Required: Transformed clip-space position
• Optional: Colors, texture coordinates, normals (data you want passed on to the pixel

shader)

• Restrictions:
• Can’t create new vertices

27

Tapering

























































11000

0)(00

00)(0

0001

1

'

'

'

z

y

x

xf

xf

z

y

x

28

Twisting


























































11000

0))(cos(0))(sin(

0010

0))(sin(0))(cos(

1

'

'

'

z

y

x

yy

yy

z

y

x





29

Bending

























































11000

0)()(0

0)()(0

0001

1

'

'

'

z

y

x

ykyh

ygyf

z

y

x

GPU Pipeline: Assemble Primitives

• Geometry processor
• How the vertices connect to form a primitive

• Per-Primitive Operations

Triangle setup

• In this stage geometry information becomes raster information (screen space
geometry is the input, pixels are the output)

• Prior to rasterization, triangles that are backfacing or are located outside the
viewing frustrum are rejected

• Some GPUs also do some hidden surface removal at this stage

host

interface

vertex

processing

triangle

setup

pixel

processing

memory

interface

Triangle Setup (cont)

• A fragment is generated if and only if its center is inside the
triangle

• Every fragment generated has its attributes computed to be the
perspective correct interpolation of the three vertices that
make up the triangle

host

interface

vertex

processing

triangle

setup

pixel

processing

memory

interface

GPU Pipeline: Rasterize

• Rasterizer
• Convert geometric rep. (vertex) to image rep. (fragment)

• Pixel + associated data: color, depth, stencil, etc.

• Interpolate per-vertex quantities across pixels

Fragment Processing

• Each fragment provided by triangle setup is fed into fragment processing as a set
of attributes (position, normal, texcoord etc), which are used to compute the final
color for this pixel

• The computations taking place here include texture mapping and math
operations

• Typically the bottleneck in modern applications

host

interface

vertex

processing

triangle

setup

pixel

processing

memory

interface

Pixel Shader

• Biggest computational resource
• One element in / 0 – 1 out
• Cannot change destination address
• No communication
• Input:

• Interpolated data from vertex shader
• Shader constants, Texture data

• Output:
• Required: Pixel color (with alpha)
• Optional: Can write additional colors to multiple render targets

• Restrictions:
• Can’t read and write the same texture simultaneously

GPU Pipeline: Shade

• Fragment processors (multiple in parallel)
• Compute a color for each pixel

• Optionally read colors from textures (images)

Memory Interface

• Fragment colors provided by the previous stage are written to the framebuffer

• Used to be the biggest bottleneck before fragment processing took over

• Before the final write occurs, some fragments are rejected by the zbuffer, stencil
and alpha tests

• On modern GPUs, z and color are compressed to reduce framebuffer bandwidth
(but not size)

host

interface

vertex

processing

triangle

setup

pixel

processing

memory

interface

Programmability in the GPU

• Vertex and fragment processing, and now triangle set-up, are programmable

• The programmer can write programs that are executed for every vertex as well as
for every fragment

• This allows fully customizable geometry and shading effects that go well beyond
the generic look and feel of older 3D applications

host

interface

vertex

processing

triangle

setup

pixel

processing

memory

interface

Diagram of a modern GPU

64bits to

memory

64bits to

memory

64bits to

memory

64bits to

memory

Input from CPU

Host interface

Vertex processing

Triangle setup

Pixel processing

Memory Interface

CPU/GPU interaction

• The CPU and GPU inside the PC work in parallel with each other

• There are two “threads” going on, one for the CPU and one for the GPU, which
communicate through a command buffer:

CPU writes commands here

GPU reads commands from here

Pending GPU commands

CPU/GPU interaction (cont)

• If this command buffer is drained empty, we are CPU limited and the GPU will
spin around waiting for new input. All the GPU power in the universe isn’t going
to make your application faster!

• If the command buffer fills up, the CPU will spin around waiting for the GPU to
consume it, and we are effectively GPU limited

Synchronization issues

• This leads to a number of synchronization considerations

• In the figure below, the CPU must not overwrite the data in the “yellow” block
until the GPU is done with the “black” command, which references that data:

CPU writes commands here

GPU reads commands from here

data

Some more GPU tips

• Since the GPU is highly parallel and deeply pipelined, try to dispatch large batches
with each drawing call

• Sending just one triangle at a time will not occupy all of the GPU’s several
vertex/pixel processors, nor will it fill its deep pipelines

• Since all GPUs today use the zbuffer algorithm to do hidden surface removal,
rendering objects front-to-back is faster than back-to-front (painters algorithm),
or random ordering

• Of course, there is no point in front-to-back sorting if you are already CPU limited

Computational Power

• Why are GPUs getting faster so fast?
• Arithmetic intensity

• the specialized nature of GPUs makes it easier to use additional transistors for
computation

• Economics
• multi-billion dollar video game market is a pressure cooker that drives innovation to

exploit this property

Modern GPU has more ALU’s

Computational Power

• GPUs are fast…
• 3.0 GHz Intel Core2 Duo (Woodcrest Xeon 5160):

• Computation: 48 GFLOPS peak
• Memory bandwidth: 21 GB/s peak
• Price: $874 (chip)

• NVIDIA GeForce 8800 GTX:
• Computation: 330 GFLOPS observed
• • Memory bandwidth: 55.2 GB/s observed
• • Price: $599 (board)

• GPUs are getting faster, faster
• CPUs: 1.4× annual growth
• GPUs: 1.7×(pixels) to 2.3× (vertices) annual growth

Computational Power

CPU v/s GPU

© NVIDIA Corporation 2009

Flexible and Precise

• Modern GPUs are deeply programmable
• Programmable pixel, vertex, and geometry engines

• Solid high-level language support

• Modern GPUs support “real” precision
• 32 bit floating point throughout the pipeline

• High enough for many (not all) applications

• Vendors committed to double precision soon

• DX10-class GPUs add 32-bit integers

Example

Image Space Silhouette Extraction Using Graphics Hardware [Wang 2005]

Depth buffer Normal buffer

Silhouettes Creases

Final result

GPU Applications

• Bump/Displacement mapping

Height map
Diffuse light without bump Diffuse light with bump

GPU Applications

• Volume texture mapping

GPU Applications

GPU Applications

• Soft Shadows

Percentage-closer soft shadows [Fernando 2005]

GPGPU

• How?

• CUDA

• OpenCL

• DirectCompute

What is CUDA?

• ‘Compute Unified Device Architecture’

• CUDA Architecture
• Expose GPU parallelism for general-purpose computing
• Retain performance

• CUDA C/C++
• Based on industry-standard C/C++
• Small set of extensions to enable heterogeneous programming
• Straightforward APIs to manage devices, memory etc.

© NVIDIA 2013

Heterogeneous Computing

 Terminology:

 Host The CPU and its memory (host memory)

 Device The GPU and its memory (device memory)

Host Device

© NVIDIA 2013

Heterogeneous Computing
#include <iostream>

#include <algorithm>

using namespace std;

#define N 1024

#define RADIUS 3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

void fill_ints(int *x, int n) {

fill_n(x, n, 1);

}

int main(void) {

int *in, *out; // host copies of a, b, c

int *d_in, *d_out; // device copies of a, b, c

int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values

in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);

out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies

cudaMalloc((void **)&d_in, size);

cudaMalloc((void **)&d_out, size);

// Copy to device

cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU

stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,

d_out + RADIUS);

// Copy result back to host

cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup

free(in); free(out);

cudaFree(d_in); cudaFree(d_out);

return 0;

}

serial code

parallel code

serial code

parallel fn

© NVIDIA 2013

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

PCI Bus

© NVIDIA 2013

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

© NVIDIA 2013

PCI Bus

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to
CPU memory

© NVIDIA 2013

PCI Bus

